<u>Bipolar Junction Transistors (BJTs) and Circuits</u> Common-Emitter (CE) Configuration:

The common-emitter configuration with npn and pnp transistors are indicated in Fig. 8-9. The external voltage source V_{BB} is used to forward bias the E-B junction and the external voltage source V_{CC} is used to reverse bias C-B junction. The magnitude of V_{CC} must be greater than V_{BB} to ensure the C-B junction remains reverse biased, since, as can be seen in the Fig. 8-9, $V_{CB} = V_{CC} - V_{BB}$.

From Eqs. [8.1] and [8.4], we obtain

 $I_C = \alpha (I_C + I_B) + I_{CBO}$ Rearranging yields

$$I_C = \frac{\alpha I_B}{1 - \alpha} + \frac{I_{CBO}}{1 - \alpha}$$
[8.6]

From Fig. 8-10, Eq. [8.6] becomes

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha} \bigg|_{I_B = 0}$$
[8.7]

Fig. 8-10

In the dc mode the levels of I_C and I_B are related by a quantity called *beta* (β_{dc}) and defined by the following equation:

$$\beta_{dc} = \frac{I_C}{I_B}$$
[8.8]

Where I_c and I_B are the levels of current at the point of operation. For practical devices the levels of β_{dc} typically ranges from about 50 to over 500, with most in the mid-range. On specification sheets β_{dc} is usually included as h_{FE} with h derived from an ac hybrid equivalent circuit.

For ac situation an ac beta (β_{ac}) has been defined as follows:

$$\beta_{ac} = \frac{\Delta I_C}{\Delta I_B} \bigg|_{V_{CE} = const.}$$
[8.9]

The formal name for β_{ac} is *common-emitter*, *forward-current*, *amplification factor* and on specification sheets β_{ac} is usually included as h_{fe} .

A relationship can be developed between β and α using the basic relationships introduced thus far. Using $\beta = I_C/I_B$ we have $I_B = I_C/\beta$, and from $\alpha = I_C/I_E$ we have $I_E = I_C/\alpha$. Substituting into $I_E = I_C + I_B$ we have $I_C/\alpha = I_C + I_C/\beta$ and dividing both sides of the equation by I_C will result in $1/\alpha = 1 + 1/\beta$ or $\beta = \alpha\beta + \alpha = (\beta + 1)\alpha$ so that

$$\alpha = \frac{\beta}{\beta + 1} \text{ or } \beta = \frac{\alpha}{1 - \alpha}$$
 [8.10]

In addition, recall that $I_{CEO} = I_{CBO} / (1 - \alpha)$ but using an equivalence of $1/(1 - \alpha) = \beta + 1$ derived from the above, we find that

$$I_{CEO} = (\beta + 1)I_{CBO}$$
[8.11]

Beta is particularly important parameter because it provides a direct link between current levels of the input and output circuits for CE configuration. That is,

$$I_C = \beta I_B$$
[8.12]

and since $I_E = I_C$ $I_B = \beta I_B + I_B$ we have $I_E = (\beta + 1)I_B$ [8.13]

The input (base) characteristics for the CE configuration are a plot of the base (input) current (I_B) versus the base-to-emitter (input) voltage (V_{BE}) for a range of values of collector-to-emitter (output) voltage (V_{CE}) as shown in Fig. 8-11. Note that I_B increases as V_{CE} decreases, for a fixed value of V_{BE} . A large value of V_{CE} results in alarge reverse bias of the C-B junction, which widens the depletion region and makes the base smaller. When the base is smaller, there are fewer recombinations of injected minority carriers and there is a corresponding reduction in base current (I_B).

Fig. 8-11

The output (collector) characteristics for CE configuration are a plot of the collector (output) current (I_C) versus collector-to-emitter (output) voltage (V_{CE}) for a range of values of base (input) current (I_B) as shown in Fig. 8-12. The collector characteristics have three basic region of interest, as indicated in Fig. 8-12, the active, cutoff, and saturation regions.

Active region: $I_B > 0$ and $I_C = \beta I_B$. Cutoff region: $I_B = 0$ and $I_C = I_{CEO}$. Saturation region: $V_{CE} \approx 0$ and $I_{B(sat.)} = I_{C(sat.)} / \beta$.

Common-Collector (CC) Configuration:

The third and final transistor configuration is the common-collector configuration, shown in Fig. 8-13 with npn and pnp transistors. The CC configuration is used primarily for impedance-matching purposes since it has a high input impedance and low output impedance, opposite to that which is true of the common-base and common-emitter configurations.

From a design viewpoint, there is no need for a set of common-collector characteristics to choose the circuit parameters. The circuit can be designed using the common-emitter characteristics. For all practical purposes, the output characteristics of the CC configuration are the same as for the CE configuration. For the CC configuration the output characteristics are a plot of emitter (output) current (I_E) v e r s u s collector-to-emitter (output) voltage (V_{CE}), for a range of values of base (input) current (I_B). The output current, therefore, is the same for both the common-emitter a n d common-collector characteristics. There is an almost unnoticeable change in the vertical scale of I_C of the common-emitter characteristics if I_C is replaced by I_E for the common-collector characteristics (since $\alpha \cong 1$, $I_E \approx I_C$).

Transistor Casing and Terminal Identification:

Whenever possible, the transistor casing will have some marking to indicate which leads are connected to the emitter, collector, or base of a transistor. A few of the methods commonly used are indicated in Fig. 8-14.

Fig. 8-14

Exercises:

- 1. Given an α_{dc} of 0.998, determine I_C if $I_E = 4$ mA.
- 2. Determine α_{dc} if $I_E = 2.8$ mA and $I_B = 20$ µA.
- 3. Find I_E if $I_B = 40 \ \mu A$ and α_{dc} is 0.98.
- 4. Given that $\alpha_{dc} = 0.987$, determine the corresponding value of β .
- 5. Given $\beta_{dc} = 120$, determine the corresponding value of α .
- 6. Given that $\beta_{dc} = 180$ and $I_C = 2.0$ mA, find I_E and I_B .
- 7. A transistor has $I_{CBO} = 48$ nA and $\alpha = 0.992$, find β and I_{CEO} .