Bipolar Junction Transistors (BJTs) and Circuits

Common-Emitter [CE] Configuration:

The common-emitter configuration with npn and pnp transistors are indicated in Fig. 8-9. The external voltage source $V_{B B}$ is used to forward bias the E-B junction and the external voltage source $V_{C C}$ is used to reverse bias C-B junction. The magnitude of $V_{C C}$ must be greater than $V_{B B}$ to ensure the C-B junction remains reverse biased, since, as can be seen in the Fig. 8-9, $V_{C B}=V_{C C}-V_{B B}$.

Fig. 8-9
From Eqs. [8.1] and [8.4], we obtain

$$
I_{C}=\alpha\left(I_{C}+I_{B}\right)+I_{C B O}
$$

Rearranging yields

$$
\begin{equation*}
I_{C}=\frac{\alpha I_{B}}{1-\alpha}+\frac{I_{C B O}}{1-\alpha} \tag{8.6}
\end{equation*}
$$

From Fig. 8-10, Eq. [8.6] becomes

$$
\begin{equation*}
I_{C E O}=\left.\frac{I_{C B O}}{1-\alpha}\right|_{I_{B}=0} \tag{8.7}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{a c}=\left.\frac{\Delta \|_{C}}{\Delta I_{B}}\right|_{V_{C E}=\text { const. }} \tag{8.9}
\end{equation*}
$$

The formal name for $\beta_{a c}$ is common-emitter, forward-current, amplification factor and on specification sheets $\beta_{a c}$ is usually included as $\boldsymbol{h}_{f e}$.

A relationship can be developed between β and α using the basic relationships introduced thus far. Using $\beta=I_{C} / I_{B}$ we have $I_{B}=I_{C} / \beta$, and from $\alpha=I_{C} / I_{E}$ we have $I_{E}=I_{C} / \alpha$. Substituting into $I_{E}=I_{C}+I_{B}$ we have $I_{C} / \alpha=I_{C}+I_{C} / \beta$ and dividing both sides of the equation by I_{C} will result in $1 / \alpha=1+1 / \beta$ or $\beta=\alpha \beta+\alpha=(\beta+1) \alpha$ so that

$$
\begin{equation*}
\alpha=\frac{\beta}{\beta+1} \text { or } \beta=\frac{\alpha}{1-\alpha} \tag{8.10}
\end{equation*}
$$

In addition, recall that $I_{C E O}=I_{C B O} /(1-\alpha)$ but using an equivalence of $1 /(1-\alpha)=\beta+1$ derived from the above, we find that

$$
\begin{equation*}
I_{C E O}=(\beta+1) I_{C B O} \tag{8.11}
\end{equation*}
$$

Beta is particularly important parameter because it provides a direct link between current levels of the input and output circuits for CE configuration. That is,

$$
\begin{equation*}
I_{C}=\beta I_{B} \tag{8.12}
\end{equation*}
$$

and since $\begin{array}{lr}I_{E}=I_{C} \quad I_{B}=\beta I_{B}+I_{B} & \text { we have } \\ \AA_{E}=(\beta+1) I_{B} & {[8.13]}\end{array}$

The input (base) characteristics for the CE configuration are a plot of the base (input) current $\left(I_{B}\right)$ versus the base-to-emitter (input) voltage ($V_{B E}$) for a range of values of collector-to-emitter (output) voltage $\left(V_{C E}\right)$ as shown in Fig. 8-11. Note that I_{B} increases as $V_{C E}$ decreases, for a fixed value of $V_{B E}$. A large value of $V_{C E}$ results in alarge reverse bias of the C-B junction, which widens the depletion region and makes the base smaller. When the base is smaller, there are fewer recombinations of injected minority carriers and there is a

Fig. 8-11

The output (collector) characteristics for CE configuration are a plot of the collector (output) current (I_{C}) versus collector-to-emitter (output) voltage ($V_{C E}$) for a range of values of base (input) current (I_{B}) as shown in Fig. 8-12. The collector characteristics have three basic region of interest, as indicated in Fig. 8-12, the active, cutoff, and saturation regions.

Active region: $I_{B}>0$ and $I_{C}=\beta I_{B}$.
Fig. 8-12
Cutoff region: $I_{B}=0$ and $I_{C}=I_{C E O}$.
Saturation region: $V_{C E} \approx 0$ and $I_{B(\text { sat.) }}=I_{C(\text { sat. })} / \beta$.

Common-Collector [CC] Configuration:

The third and final transistor configuration is the common-collector configuration, shown in Fig. 8-13 with npn and pnp transistors. The CC configuration is used primarily for impedance-matching purposes since it has a high input impedance and low output impedance, opposite to that which is true of the common-base and commonemitter configurations.

From a design viewpoint, there is no need for a set of common-collector characteristics to choose the circuit parameters. The circuit can be designed using the common-emitter characteristics. For all practical purposes, the output characteristics of the CC configuration are the same as for the CE configuration. For the CC configuration the output characteristics are a plot of emitter (output) current (I_{E}) versus collector-to-emitter (output) voltage $\left(V_{C E}\right)$, for a range of values of base (input) current $\left(I_{B}\right)$. The output current, therefore, is the same for both the commonemitter a n d common-collector characteristics. There is an almost unnoticeable change in the vertical scale of I_{C} of the common-emitter characteristics if I_{C} is replaced by I_{E} for the common-collector characteristics (since $\alpha \cong 1, I_{E} \approx I_{C}$).

Fig. 8-13

Transistor Casing and Terminal Identification:

Whenever possible, the transistor casing will have some marking to indicate which leads are connected to the emitter, collector, or base of a transistor. A few of the methods commonly used are indicated in Fig. 8-14.

Fig. 8-14

Exercises:

1. Given an $\alpha_{d c}$ of 0.998 , determine I_{C} if $I_{E}=4 \mathrm{~mA}$.
2. Determine $\alpha_{d c}$ if $I_{E}=2.8 \mathrm{~mA}$ and $I_{B}=20 \mu \mathrm{~A}$.
3. Find I_{E} if $I_{B}=40 \mu \mathrm{~A}$ and $\alpha_{d c}$ is 0.98 .
4. Given that $\alpha_{d c}=0.987$, determine the corresponding value of β.
5. Given $\beta_{d c}=120$, determine the corresponding value of α.
6. Given that $\beta_{d c}=180$ and $I_{C}=2.0 \mathrm{~mA}$, find I_{E} and I_{B}.
7. A transistor has $I_{C B O}=48 \mathrm{nA}$ and $\alpha=0.992$, find β and $I_{\text {CEO }}$.
