

3rd Class

COMPUTER APPLICATION

MATLAB

M.Sc. Zena Ahmed

1

SECTION ONE

MATLAB Environments

2

1.1 Introduction:

MATLAB is a powerful computing system for handling the calculations

involved in scientific and engineering problems. The name MATLAB

stands for MATrix LABoratory, because the system was designed to

make matrix computations particularly easy.

One of the many things you will like about MATLAB (and which

distinguishes it from many other computer programming systems, such as

C++ and Java) is that you can use it interactively. This means you type

some commands at the special MATLAB prompt, and get the answers

immediately. The problems solved in this way can be very simple, like

finding a square root, or they can be much more complicated, like finding

the solution to a system of differential equations. For many technical

problems you have to enter only one or two commands, and you get the

answers at once. MATLAB does most of the work for you.

1.2 MATLAB Environments:
The MATLAB Desktop is what results when you invoke MATLAB on

your computer and provides a convenient and easily configurable

interface to the various tools that make up the development environment.

Depending on how you have set preferences for your specific installation

of MATLAB, it should look something like that shown in Figure1.1.

In order to begin, we must assume that you have already gained some

familiarity with the MATLAB development environment. Of course the

portion of the MATLAB desktop with which you should be most familiar

is the Command Window as this is where you will issue commands

directly to MATLAB. Specifically, you type the MATLAB statements at

the Command Window prompt which is denoted by >> . Generally we

will refer to this as the “command prompt.” A few other items with which

you will want to become familiar are: the Command History where all the

commands entered in the Command Window are recorded, the MATLAB

Search Path and how you can add and remove folders from this search

path, and the three MATLAB file types that we will be mainly working

with M-files, FIG-files, and MAT-files. These file types derive their

names from the file extensions. We will avoid other MATLAB file types

3

such as MEX-Files and P-Files. You will also want to become familiar

with the MATLAB Figure Window as this is where you display graphics

and GUIs and the MATLAB Editor/Debugger where you will create

scripts and functions.

Figure1.1 The MATLAB desktop.

4

1.3 MATLAB Windows:
1. Command Window: is the main window where you type commands

directly to the MATLAB interpreter. MATLAB expressions and

statements are evaluated as you type them in the Command window, and

results of the computation are displayed there too. Expressions and

statements are also used in M-files. They are usually of the form:

Variable = Expression

Or simply:

Expression

Expressions are usually composed from operators, functions, and variable

names. Evaluation of the expression produces a matrix (or other data

type), which is then displayed on the screen or assigned to a variable for

future use. If the variable name and =sign are omitted, a variable ans (for

answer) is automatically created to which the result is assigned.

2. Workspace Window: This lists variables that you have either entered

or computed in your MATLAB session. There are many fundamental

data types (or classes) in MATLAB, each one a multidimensional array.

The classes that we will concern ourselves with most are rectangular

numerical arrays with possibly complex entries, and possibly sparse. An

array of this type is called a matrix. A matrix with only one row or one

column is called a vector (row vectors and column vectors behave

differently; they are more than mere one dimensional arrays). A 1–by–1

matrix is called a scalar.

3. Help Window: gives you access to a great deal of useful information

about the MATLAB language and MATLAB computing environment. It

also has a number of example programs and tutorials. You can also use

the help eig command, typed in the Command window. For example, the

command eig will give information about the eigenvalue function eig.

4. Command History window: This window lists the commands typed

in so far. You can re-execute a command from this window by double

clicking or dragging the command into the Command window. Try

double-clicking on the command:

A=A+1

5

Shown in your Command History window. For more options, right-click

on a line of the Command window.

5. Editor Window: is a simple text editor where you can load, edit and

save complete MATLAB programs. The Editor window also has a menu

command (Debug/Run) which allows you to submit the program to the

command window.

6

SECTION TWO

First Steps in MATLAB

7

2.1 A first steps

To get matlab to work out 1 + 1, type the following at the prompt:

1+1

matlab responds with

ans = 2

The answer to the typed command is given the name ans. In fact ans is

now a variable that you can use again. For example you can type

ans*ans

to check that 2 × 2=4:

 ans*ans

ans = 4

Matlab has updated the value of ans to be 4.

The spacing of operators in formulas does not matter. The following

formulas both give the same answer:

1+3 * 2-1 / 2*4 1+3*2-1/2*4

The order of operations is made clearer to readers of your matlab code if

you type carefully:

1 + 3*2 - (1/2)*4

2.2 Entering Matrices

The best way for you to get started with MATLAB is to learn how to

handle matrices, to type a matrix into matlab you must:

• begin with a square bracket [

• separate elements in a row with commas or spaces

 • use a semicolon ; to separate rows

• end the matrix with another square bracket].

 For example type:

a=[1 2 3;4 5 6;7 8 9]
Matlab responds with
a=

 1 2 3

 4 5 6

 7 8 9

8

2.2 Variables and assignment

Variables are named locations in memory where numbers, strings and

other elements of data may be stored while the program is

working. Variable names are combinations of letters and digits, but must

start with a latter. MATLAB does not require you to declare the names

of variables in advance of their use. This is actually a common cause of

error, since it allows you to refer accidentally to variables that don’t

exist. To assign a variable a value, use the assignment statement. This

takes the form
variable=expression;

for example
a=6;

or
name=’Mark’;

To display the contents of a variable, use
disp(variable);

2.3 Useful Matrix Generators

Matlab provides four easy ways to generate certain simple matrices.

These are

zeros a matrix filled with zeros

 ones a matrix filled with ones

randi a matrix with integer values distributed random elements

eye identity matrix

To tell matlab how big these matrices should be you give the functions

the number of rows and columns. For example:

 >>u=randi(10,[2 2])

u =

 6 5

 1 4

 >>eye(3(

ans =

1 0 0

0 1 0

0 0 1

9

2.4 Subscripting

Individual elements in a matrix are denoted by a row index and a column

index. To pick out the third element of the vector u type:

>> u(3)

 ans =

0.1270

You can use the vector [1 2 3] as an index to u. To pick the first three

elements of u type

>> u([1 2 3])

ans =

 0.8147 0.9058 0.1270

Remembering what the colon operator does, you can abbreviate this to

>> u(1:3)

 ans =
0.8147

0.9058

0.1270
You can also use a variable as a subscript:
>> i = 1:3;

 >> u(i)
ans =

0.8147

0.9058

0.1270
Two dimensional matrices are indexed the same way, only you have to

provide two indices:
>>a=[1 2 3;4 5 6;7 8 9]

a=
1 2 3

4 5 6

7 8 9

>> a(3,2)

 ans =
8

>> a(2:3,3)

11

ans =
6 9

>> a(2,:)

ans =
4 5 6

 >> a(:,3)
ans =

 3

 6

 9

The last two examples use the colon symbol as an index, which matlab

interprets as the entire row or column.

If a matrix is addressed using a single index, matlab counts the

index down successive columns:

> [a a(a)]

ans =

1 2 3 1 4 7

4 5 6 2 5 8

7 8 9 3 6 9

The colon symbol can be used as a single index to a matrix. Continuing

the previous example, if you type

a(:)

matlab interprets this as the columns of the a-matrix successively strung

out in a single long column:

>> a(:)

ans =

1

4

7

2

5

8

3

6

9

11

2.5 The Colon Operator

The colon" : " is one of MATLAB’s most important operators. It occurs

in several different forms. The expression
>>1:10
is a row vector containing the integers from 1 to 10
1 2 3 4 5 6 7 8 9 10
To obtain nonunit spacing, specify an increment. For example,
>>100:-7:50
is
100 93 86 79 72 65 58 51

2.6 End as a subscript
To access the last element of a matrix along a given dimension, use end

as a subscript. This allows you to go to the final element without knowing

in advance how big the matrix is. For example:
>> q = 4:10

q=
4 5 6 7 8 9 10

>> q(end)
ans = 10
>> q(end-4:end)

ans =
6 7 8 9 10

 >> q(end-2:end)
ans = 8 9 10
This technique works for two-dimensional matrices as well:

>> q = [1 2 3;4 5 6;7 8 9]

 q=

1 2 3

4 5 6

7 8 9

>> q(end,end)

 ans =

9

>> q(2,end-1:end)

 ans =

5 6

12

>> q(end-2:end,end-1:end)

ans =

2 3

5 6

8 9

>> q(end-1,:)

ans =

4 5 6

7 8 9

2.7 Transpose

To convert rows into columns use the transpose symbol ' :

>>q'

ans =

1 4 7

2 5 8

3 6 9

>> b = [[1 2 3]’ [4 5 6]’]

 b=

1 4

2 5

3 6

2.8 Deleting Rows or Columns

To get rid of a row or column set it equal to the empty matrix [].

>>>> a= [1 2 3;4 5 6;7 8 9]

 a=

1 2 3

4 5 6

7 8 9

>> a(:,2) = []

a=

1 3

4 6

7 9

13

2.9 Basic Matrix Functions:

Command Description

magic(n)
>>M =

magic(3)

M =

 8 1 6

 3 5 7

 4 9 2

returns an n-by-n matrix constructed from the integers 1

through n^2 with equal row and column sums. The order

n must be a scalar greater than or equal to 3.

Sum(A)

>>A=[1 2 3

 4 5 6];

>>sum(A)

Ans=

 5 7 9

>>sum(sum(A))

Ans=

 21

>>sum(A,2)

Ans=

 6

 15

If A is a vector, sum(A) returns the sum of the elements.

If A is a matrix, sum(A) treats the columns of A as

vectors, returning a row vector of the sums of each

column.

sum(A,dim) sums along the dimension of A specified by

scalar dim

Min(A)

If A is a vector, returns the smallest element in A.

If A is a matrix, treats the columns of A as vectors,

returning a row vector containing the minimum element

from each column.

Max(A) If A is a vector, returns the largest element in A.

If A is a matrix, treats the columns of A as vectors,

returning a row vector containing the maximum element

from each column.

Mean(A)

>>A = [1 2 3; 3

3 6; 4 6 8; 4 7

7];

>>mean(A)

ans =

 3 4.5 6

If A is a vector, returns the mean value of A.

If A is a matrix, treats the columns of A as vectors,

returning a row vector of mean values.

14

median(A)

>>A = [1 2 4

4; 3 4 6 6; 5 6

8 8; 5 6 8 8];

>>median(A)

ans =

 4 5 7 7

If A is a vector, returns the median value of A.

If A is a matrix, treats the columns of A as vectors,

returning a row vector of median values.

Size(X) returns the sizes of each dimension of array X in a vector

d with ndims(X) elements. If X is a scalar, which

MATLAB software regards as a 1-by-1 array, size(X)

returns the vector [1 1].

Length() finds the number of elements along the largest dimension

of an array. array is an array of any MATLAB data type

and any valid dimensions.

Diag() puts v on the main diagonal, same as above with k = 0.

Prod()

>>M =

magic(3)

M =

 8 1 6

 3 5 7

 4 9 2

>>prod(M) =

96 45 84

f A is a vector, prod(A) returns the product of the

elements.

If A is a matrix, prod(A) treats the columns of A as

vectors, returning a row vector of the products of each

column.

15

Exercises:

Q1:Write a program that returns the average value giving three

arbitrary numbers represented by the variables A, B, and C. Test the

program for A = 35, B = 21, and C = 13.

Q2:Let u = [0 1] and v = [2 3].Execute and evaluate the responses of

the following MATLAB commands:

a. s = [u v]

b. ss = [u; v]

c. sss = [ss, ss; ss, ss]

--

Q3:Let A =[1 2 3; 5 6 7],and B=[4 ;8] Execute the following

commands using MATLAB and observe and evaluate the responses:

a. C = [A B]

b. D = [A A]

c. E = [B B]

d. F = [A; A]

e. G = [B; B]

f. H = [A; B]

Q4: Let A = [1 2 3;4 5 6;7 8 9;10 11 12;13 14 15], V1= [2 1 4 5 3], and

V2=[3 2 1]

Execute and observe the responses of the following commands:

a. B = A(V1, :)

b. C = A(:, V2)

Note :
Given the vector V = [v1 v2 … vn], the instruction mean(V) returns

the average value of all elements of V, where mean(V)

∑

16

Q1:MATLAB Solution

Enter the following instructions:

>> A = input (‘Enter the value of the first number: A = ’);

Enter the value of the first number: A = 35

>> % note that 35 is assigned to A

>> B = input (‘Enter the value of the second number: B = ’);

Enter the value of the second number: B = 21

>> % 21 is assigned B

>> C = input (‘Enter the value of the third number: C = ’);

Enter the value of the third number: C = 13

>> % 13 is assigned C

>> format compact % suppress extra line-feed

>> The _ average _ is = (A+B+C)/3 % returns the average

The _ average _ is = 23

Q2:MATLAB Solution

>> u = [0 1];

>> v = [2 3];

>> s = [u v]

s =

0 1 2 3

>> ss = [u;v]

ss =

0 1

2 3

>> sss = [ss,ss;ss,ss]

sss =

0 1 0 1

2 3 2 3

0 1 0 1

2 3 2 3

--

Q3:MATLAB Solution

>> A = [1 2 3;5 6 7] % matrix A

A =

1 2 3

5 6 7

>> B = [4;8] % column vector B

B =

4

8

17

>> C = [A B] % part(a)

C =

1 2 3 4

5 6 7 8

>> D = [A A] % part(b)

D =

1 2 3 1 2 3

5 6 7 5 6 7

>> E = [B B] % part(c)

E =

4 4

8 8

>> F = [A;A] % part(d)

F =

1 2 3

5 6 7

1 2 3

5 6 7

>> G = [B;B] % part(e)

G =

4

8

4

8

>> H = [A;B] % part(f)

??? Error using ==> vertcat

All rows in the bracketed expression must have the same

number of columns.
--

Q4:MATLAB Solution

>> A = [1 2 3;4 5 6;7 8 9;10 11 12;13 14 15]

A =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

>> V1 = [2 1 4 5 3]

V1 =

2 1 4 5 3

>> B = A(V1,:) % observe that the first row of B is the

second row of A, …., etc.

18

B =

4 5 6

1 2 3

10 11 12

13 14 15

7 8 9

>> V2 = [3 2 1] % observe that the first column of C is

the 3rd. column of A, …, etc

V2 =

3 2 1

>> C = A(:,V2)

C =

3 2 1

6 5 4

9 8 7

12 11 10

15 14 13

19

SECTION THREE

Basic Plot in MATLAB

21

Basic Plotting

MATLAB has extensive facilities for displaying vectors and matrices as

graphs, as well as annotating and printing these graphs. This section

describes a few of the most important graphics functions and provides

examples of some typical applications.

Creating a Plot

The plot function has different forms, depending on the input arguments.

If y is a vector, plot(y) produces a piecewise linear graph of the elements

of y versus the index of the elements of y. If you specify two vectors as

arguments, plot(x,y) produces a graph of y versus x.

For example, these statements use the colon operator to create a vector of

x values ranging from zero to 2pi, compute the sine of these values, and

plot the result.

x = 0:pi/100:2*pi;

y = sin(x);

plot(x,y)

Now label the axes and add a title. The characters \pi create the symbol p.

xlabel('x = 0:2\pi')

ylabel('Sine of x')

title('Plot of the Sine Function','FontSize');

21

Axis Labels and Titles

The xlabel, ylabel, and zlabel commands add x-, y-, and z-axis labels. The

title command adds a title at the top of the figure and the text function

inserts text anywhere in the figure. A subset of Text notation produces

Greek letters. You can also set these options interactively.

t = -pi:pi/100:pi;

y = sin(t);

plot(t,y);

axis([-pi pi -1 1]);

xlabel('-\pi \leq {\itt} \leq \pi');

ylabel('sin(t)');

title('Graph of the sine function');

text(1,-1/3,'{\itNote the odd symmetry.}');

Multiple Data Sets in One Graph

Multiple x-y pair arguments create multiple graphs with a single call to

plot. MATLAB automatically cycles through a predefined (but user

settable) list of colors to allow discrimination between each set of data.

For example, these statements plot three related functions of x, each

curve in a separate distinguishing color.

y2 = sin(x-.25);

y3 = sin(x-.5);

22

plot(x,y,x,y2,x,y3)

The legend command provides an easy way to identify the individual

plots.

legend('sin(x)','sin(x-.25)','sin(x-.5)')

Specifying Line Styles and Colors

It is possible to specify color, line styles, and markers (such as plus signs

or circles) when you plot your data using the plot command.

plot(x,y,'color_style_marker')

color_style_marker is a string containing from one to four characters

(enclosed in single quotation marks) constructed from a color, a line

style, and

a marker type:

•Color strings are 'c', 'm', 'y', 'r', 'g', 'b', 'w', and 'k'. These correspond to

cyan, magenta, yellow, red, green, blue, white, and black.

•Linestyle strings are '-' for solid, '--' for dashed, ':' for dotted, '-.' For

dash-dot. Omit the linestyle for no line.

•The marker types are '+', 'o', '*', and 'x' and the filled marker types 's'

 for square, 'd' for diamond, '^' for up triangle, 'v' for down triangle, '>'

For example:

x1 = 0:pi/100:2*pi;

23

x2 = 0:pi/10:2*pi;

plot(x1,sin(x1),'r:',x2,sin(x2),'r+')

You can plot multiple lines by repeating the arguments:

plot(x1,y1,x2,y2,…);

or

plot(x1,y1,style1,x2,y2,style2,…);

You can give the graph a title with the

title(label);

command, where label is a character string. Likewise you can add labels

to the X and Y axes with

xlabel(label);

and

ylabel(label);

Multiple Plots in One Figure

The subplot command enables you to display multiple plots in the same

window or print them on the same piece of paper. Typing

 subplot(m,n,p)

partitions the figure window into an m-by-n matrix of small subplots and

selects the pth subplot for the current plot. The plots are numbered along

first the top row of the figure window, then the second row, and so on.

For example, these statements plot data in four different subregions of the

figure window.

t = 0:pi/10:2*pi;

y1=sin(t);

24

y2=cos(t);

y3=sin(t)/t;

y4=cos(t)+sin(t);

subplot(2,2,1); plot(t,y1);

subplot(2,2,2); plot(t,y2);

subplot(2,2,3); plot(t,y3);

subplot(2,2,4); plot(t,y4);

Setting Axis Limits

By default, MATLAB finds the maxima and minima of the data to choose

the axis limits to span this range. The axis command enables you to

specify your own limits

axis([xmin xmax ymin ymax])

or for three-dimensional graphs,

axis([xmin xmax ymin ymax zmin zmax])

25

Exercises:

Q1: Write a M-file call matq1.m program that returns the plots of

the following families of curves over the domain −2π ≤ x ≤ 2π by

consisting of linear increments of Δx = 0.2

1.Y1 = 1 + sin(x)

2.Y2 = 5 sin(x) + x

3.Y3= sin(x) cos(3x)

4.Y4 = –2sin(x)

1. Plot each curve in an individual subwindow by using the subplot.

2. Choose color, markers for each curve.

3. Label the x-axis and y-axis and title to each curve.

Answer of Q1:

MATLAB Solution

 % matq1.m

 X = [-2*pi:0.001:2*pi];

Z= sin(X);

 subplot(2,2,1) ;

xlabel (‘X’); % creates label X

 ylabel(‘Y’); % creates label Y

 title (‘sin(X)’);

Y1 = Z+1; % activates sub-window 1,1

plot (X,Y1) ;% plots Y1 vs X

subplot(2,2,2) ;

xlabel (‘X’); % creates label X

 ylabel(‘Y’); % creates label Y

 title (‘5sin(X)+X’);

 Y2 = 5*Z+X;

plot (X,Y2) ;% plots Y2 vs X

subplot(2,2,3) ;

xlabel (‘X’); % creates label X

 ylabel(‘Y’); % creates label Y

 title (‘sin(X) cos3X’);

Y3 = Z .* cos(3 * X);

26

plot (X,Y3) ;% plots Y3 vs X

subplot(2,2,4) ;

xlabel (‘X’); % creates label X

 ylabel(‘Y’); % creates label Y

 title (‘-2sin(X)’);

Y4 = -2 .* Z;

plot (X,Y4) ;% plots Y4 vs X

Q2: write a matlab program call matq2.m that returns the plot of the

3-D space defined by the following set of spatial equations:

Z1 = r cos(1/t)

Z2 = –2r sin(t)

Z3 = 12rt

where r = e−t/7 over the range -2π ≤ t ≤ 2π, consisting of linear

increments of Δt = 0.01.

Label the x-axis and y-axis and z-axis and title to the curve.

Answer of Q2:

MATLAB Solution

% matq2.m file

 T = [0,0.01:12*pi];

R = exp(-T/7);

 Z1 =R ./T;

 Z2= R .*cos(5 ./T);

 Z3= R .*sin(2 .*T);

xlabel (‘X’);

ylabel(‘Y’);

 zlabel(‘Z1’);

 title (‘3D view for r/t’);

 subplot (2,2,1);

 plot3(T,R,Z1)

 xlabel (‘X’);

ylabel(‘Y’);

 zlabel(‘Z2’);

 title (‘3D view for r cos(5/t)’);

subplot (2,2,2);

27

 plot3(T,R,Z2)

 xlabel (‘X’);

 ylabel(‘Y’);

 zlabel(‘Z3’);

 title (‘3D view for r sin(2t) ’);

subplot (2,2,3);

 plot3(T,R,Z3);

28

SECTION FOUR

Loops and Conditional Statements
in MATLAB

29

 Introduction

We now consider how MATLAB can be used to repeat an

operation many times and how decisions are taken. We shall conclude

with a description of a conditional loop. The examples we shall use for

demonstrating the loop structures are by necessity simplistic and, as we

shall see, many of the commands can be reduced to a single line. The true

power of computers comes into play when we need to repeat calculations

over and over again.

In order to help you to understand the commands in this chapter, it is

suggested that you work through the codes on paper. You should play the

role of the computer and make sure that you only use values which are

assigned at that time. Remember that computers usually operate in a

serial fashion and that they can only use a variable once it has been

defined and given a value. This kind of thought process is very helpful

when designing your own codes.

IF statement
An IF statement can be used to execute code once when the logical test

(expression) returns a true value (anything but 0). An "else" statement

following an if statement is executed if the same expression is false (0).

Standard form is:

if (condition statement)

 (matlab commands)

end

More complicated structures are also possible including combinations

like the following:

if (condition statement)

 (matlab commands)

elseif (condition statement)

 (matlab commands)

elseif (condition statement)

 (matlab commands)

…

else

 (matlab commands)

end

31

The conditions are boolean statements and the standard comparisons can

be made. Valid comparisons include "<" (less than), ">" (greater than),

"<=" (less than or equal), ">=" (greater than or equal), "==" (equal - this

is two equal signs with no spaces between them), and "˜=" (not equal).

For example, the following code will set the variable j to be -1:

a = 2;

b = 3;

if (a<b)

 j = -1;

end

Additional statements can be added for more refined decision making.

The following code sets the variable j to be 2.

a = 4;

b = 3;

if (a<b)

 j = -1;

elseif (a>b)

 j = 2;

end

The else statement provides a catch all that will be executed if no other

condition is met. The following code sets the variable j to be 3.

a = 4;

b = 4;

if (a<b)

 j = -1;

elseif (a>b)

 j = 2;

else

 j = 3

end

31

Exercise 1: Write m-file to check if enter number is not zero?

Solution

a = input('enter any number');

if a ~= 0

 disp('a is not equal to 0')

end

Exercise 2: Write m-file to check if enter number is positive or negative?

Solution

a = input('enter any number');

if a > 0

 disp('a is positive')

else

 disp('a is negative')

end

Exercise3:What will the following code print?

p1 = 3.14;

p2 = 3.14159;

if p1 == p2

 disp('p1 and p2 are equal')

else

 disp('p1 and p2 are not equal')

end

Solution

' p1 and p2 are not equal'

Exercise4: Write m-file to find the following equation?

y={

Solution

x = input('enter any number');

if x >= 0 && a < 7

 y=-x;disp(y);

32

else

 y=abs(x);disp(y);

end

Switch statement
Switch statements are used to perform one of several possible sets of

operations, depending on the value of a single variable. They are intended

to replace nested "if" statements depending on the same variable, which

can become very cumbersome. The syntax is as follows:

switch variable

 case value1

 statements(1)

 case value2

 statements(2)

 ...

 otherwise

 statements

end

The end is only necessary after the entire switch block, not after each

case. If you terminate the switch statement and follow it with a "case"

statement you will get an error saying the use of the "case" keyword is

invalid. If this happens it is probably because you deleted a loop or an

"if" statement but forgot to delete the "end" that went with it, thus leaving

you with surplus "end"s. Thus MATLAB thinks you ended the switch

statement before you intended to.

The otherwise keyword executes a certain block of code (often an error

message) for any value of variable other than those specified by the

"case" statements. for example:

n=input(‘Please input the figure:’,'s')

switch n

case (‘triangle’)

n=3;

sum=(n-3).*(180)

case (‘square’)

n=4;

sum=(n-3).*(180)

case(‘pentagon’)

n=5;

sum=(n-3).*(180)

33

case (‘hexagon’)

n=6;

sum=(n-3).*(180)

end

Example, if the floor is 0, set s to 1, if the floor is prime, add 1, otherwise,

subtract 1:

>> s = rand(1)*10;

>> switch floor(s)

 case 0

 s = 1

 case {2, 3, 5, 7}

 s = s + 1

 otherwise

 s = s - 1;

end

Example:check if the input number is even or odd?
d = floor(10*rand);

switch d

case {2, 4, 6, 8}

disp(’Even’);

case {1, 3, 5, 7, 9}

disp(’Odd’);

otherwise

disp(’Zero’);

end

FOR statement
The FOR statement executes code a specified number of times using an iterator.

Syntax:
for iterator = startvalue:increment:endvalue

 statements

end

The iterator variable is initialized to startvalue and is increased by the amount in

increment every time it goes through the loop, until it reaches the value endvalue. If

increment is omitted, it is assumed to be 1, as in the following code:

for ii = 1:3

 statements

end

This would execute statements three times.

34

 WHILE statement
The while statement executes code until a certain condition evaluates to false or zero.

Example:
while condition

 statements

end

Loops Structures

The basic MATLAB loop command is for and it uses the idea of

repeating an operation for all the elements of a vector. A simple example

helps to illustrate this:

% looping.m

N = 5;

for ii = 1:N

disp([int2str(ii) ’ squared equals ’ int2str(iiˆ2)])

end

This gives the output

1 squared equals 1

2 squared equals 4

3 squared equals 9

4 squared equals 16

5 squared equals 25

The first three lines start with % indicating that these are merely

comments and are ignored by MATLAB. They are included purely for

clarity, and here they just tell us the name of the code. The fourth line sets

the variable N equal to 5 (the answer is suppressed by using the

semicolon). The for loop will run over the vector 1:N, which in this case

gives [1 2 3 4 5], setting the variable ii to be each of these values in turn.

The body of the loop is a single line which displays the answer. Note the

use of int2str to convert the integers to strings so they can be combined

with the message “ squared equals ”. Finally we have the end statement

which indicates the end of the body of the loop. We pause here to clarify

the syntax associated with the for command:

for ii = 1:N

commands

end

35

This repeats the commands for each of the values in the vector with ii=

1, 2, · · · ,N. If instead we had for ii = 1:2:5 then the commands would be

repeated with ii equal to 1, 3 and 5. Notice in the code above we have

indented the disp command. This is to help the reading of the code and is

also useful when you are debugging. The spaces are not required by

MATLAB. If you use MATLAB built-in editor (using the command edit)

then this indentation is done automatically.

Example 3.1 The following code writes out the seven times table up to

ten seven’s.

str = ’ times seven is ’;

for j = 1:10

x = 7 * j ;

disp([int2str(j) str int2str(x)])

end

The first line sets the variable str to be the string “ times seven is ” and

this phrase will be used in printing out the answer. In the code this

character string is contained within single quotes. It also has a space at

the start and end (inside the quotes); this ensures the answer is padded

out. The start of the for loop on the third line tells us the variable j is to

run from 1 to 10 (in steps of the default value of 1), and the commands in

the for loop are to be repeated for these values. The command on the

fourth line sets the variable x to be equal to seven times the current value

of j. The fifth line constructs a vector consisting of the value of j then the

string str and finally the answer x. Again we have used the command

int2str to change the variables j and x into character strings, which are

then combined with the message str.

Example 3.2 The following code prints out the value of the integers from

1 to 20 (inclusive) and their prime factors.

To calculate the prime factors of an integer we use the MATLAB

command factor

for i = 1:20

disp([i factor(i)])

end
This loop runs from i equals 1 to 20 (in unit steps) and displays the

integer and its prime factors. There is no need to use int2str (or num2str)

here since all of the elements of the vector are integers.

36

The values for which the for loop is evaluated do not need to be specified

inline, instead they could be set before the actual for statement.

Exercises:
Q1:Write some statements that display a list of integers from 10 to 20

inclusive ,each with its square root next to it.

Q2:Write a single statement to find and display the sum of the successive

even integers 2, 4, . . . , 200. (Answer: 10 100)

Q3:Ten students in a class write a test. The marks are out of 10. All the

marks are entered in a MATLAB vector marks. Write a statement to find

and display the average mark. Try it on the following marks:

5 8 0 10 3 8 5 7 9 4 (Answer: 5.9)

Q4:What are the values of x and a after the following statements have

been

executed?

a = 0;

i = 1;

x = 0;

a = a + i;

x = x + i / a;

a = a + i;

x = x + i / a;

a = a + i;

x = x + i / a;

a = a + i;

x = x + i / a;

Q5:

(a) Work out by hand the output of the following script for n=4:

n = input(’Number of terms? ’);

s = 0;

for k = 1:n

s = s + 1 / (k ˆ 2);

end;

disp(sqrt(6 * s))

If you run this script for larger and larger values of n you will find that

the output approaches a well-known limit. Can you figure out what it is?

(b) Rewrite the script using vectors and array operations.

37

Q6:Work through the following script by hand. Draw up a table of the

values of i, j and m to show how their values change while the script

executes. Check your answers by running the script.

v = [3 1 5];

i = 1;

for j = v

i = i + 1;

if i == 3

i = i + 2;

m = i + j;

end

end

Q7:The electricity accounts of residents in a very small town are

calculated as follows:

➤ if 500 units or less are used the cost is 2 cents per unit;

➤ if more than 500, but not more than 1000 units are used, the cost is

$10 for the first 500 units, and then 5 cents for every unit in excess of

500;

➤ if more than 1000 units are used, the cost is $35 for the first 1000 units

plus 10 cents for every unit in excess of 1000;

➤ in addition, a basic service fee of $5 is charged, no matter how much

electricity is used.

Q8:Write a program which enters the following five consumptions into a

vector, and uses a for loop to calculate and display the total charge for

each one: 200, 500, 700, 1000, 1500. (Answers: $9, $15, $25, $40, $90)

38

SECTION FIVE

a custom-made Matlab function

in MATLAB

39

Introduction:
Functions are a means of collecting a large number of commands

such that the desired task can be undertaken using a single command line.

Similarly, a user-defined function in MATLAB can be used as if it were

an intrinsic part of the language. A function can be as small and simple

or as large and complicated as necessary to perform a particular task.

Functions allow you to build on your previous work and on the work of

others, rather than starting over again and again to perform related tasks.

Any native MATLAB command or function may be used in your user-

defined function. Procedures can refer to any global variable. That is,

any variable/matrix, array, etc. that appears in the Workspace window. A

scalar, matrix, array, etc created in a function is a local variable and

cannot be accessed from other function or from the main level program

code unless it is explicitly decreased as a global variable.

User-Defined Functions
If there is some operation you use frequently that is not already a

predefined function in MATLAB, you can create a user-defined

function. These function files are simply m-files with a specific structure.

 Using the MATLAB editor we are able to construct our own function

files that can be used repeatedly by other scripts files or other functions.

This process is analogous to the use of subroutines in other languages

such as C . Essentially, this means that we can construct our own library

of functions relevant to our own interests and applications. The main

benefit or consequence is that complicated programming problems can be

decomposed into smaller tasks and programs can then be developed in a

modularized and structured manner.

To do this we define and code function files – a special type of m-

file, that have a well specified structure or syntax. The first line on the

function file must contain a function definition line that defines the

function name and specifies a list of input and output variables:

function [output variables]=function_name(input variables);

 Output variable is a comma separated list of variables calculated

within the function file and enclosed within square brackets in the

function definition. These are the values that the function will

return to the MATLAB workspace.

41

 Input variable is a comma separated list of variables that need to

be passed to the function when you use it. They are akin to the

argument of the trigonometric functions we looked at earlier.

 Function_name is the name that you have chosen for the function

and MUST be the same as the filename that you use to save the m-

file (but it does not include the .m extension)

Any other variables defined inside the function but not in the

output variable list are local variables and are not returned to or

shown in your workspace. You may use variable names inside a

function even if those variables are used in a different way in the

calling function.

Zero or more Return Values and Parameters:

The following examples show several variations on functions, including

those that return a single value, return no values, return many values, take

parameters, take no parameters, etc.

With a Single Return Value

function return_value = name(parameters)

 CODE

 end % function

Without a Return Value

 function name(parameters)

 CODE

 end % end of function

41

With MULTIPLE Return Values

 function [value_1, value_2, value_3] = name(parameters

)

 CODE

 end % end of function

Sometimes a function will just "do an action" but not based on anything the

user wants. Such a function would be said to be "hard coded" and do the

same thing every time. For example, the random function in most languages

will return a random number but does not require any actual parameters to

make it work.

 function result = name()

 CODE

 end %end of function

Example:

function [c f] = temperature(x)

f = 9*x/5 + 32;

c = (x - 32) * 5/9;

end;

Then, you can run the Matlab function from the command window, like

this:

>> [cent fahr] = temperature(32)

cent =

42

 0

fahr =

 89.6000

>> [c f]=temperature(-41)

c =

 -40.5556

f =

 -41.8000

The receiving variables ([cent fahr] or [c f]) in the command window (or

in another function or script that calls 'temperature') may have different

names than those assigned within your just created function.

Exercises:

Q1: Write user function to the following matlab function:

1. Factorial().

2. Sum().

3. Min().

4. Max().

5. Prod().

43

SECTION SIX

Matlab GUI

44

Introduction
A graphical user interface (GUI) is a pictorial interface to a program. A

good GUI can make programs easier to use by providing them with a

consistent appearance and with intuitive controls like pushbuttons, list

boxes, sliders, menus, and so forth. The GUI should behave in an

understandable and predictable manner, so that a user knows what to

expect when he or she performs an action. For example, when a mouse

click occurs on a pushbutton, the GUI should initiate the action described

on the label of the button.

How a Graphical User Interface Works
A graphical user interface provides the user with a familiar environment

in which to work. This environment contains pushbuttons, toggle buttons,

lists, menus, text boxes, and so forth, all of which are already familiar to

the user, so that he or she can concentrate on using the application rather

than on the mechanics involved in doing things. However, GUIs are

harder for the programmer because a GUI-based program must be

prepared for mouse clicks (or possibly keyboard input) for any GUI

element at any time. Such inputs are known as events, and a program that

responds to events is said to be event driven. The three principal elements

required to create a MATLAB Graphical User Interface are:

1. Components:- Each item on a MATLAB GUI (pushbuttons, labels,

edit boxes, etc.) is a graphical component. The types of components

include graphical controls (pushbuttons, edit boxes, lists, sliders, etc.),

static elements (frames and text strings), menus, and axes.

Graphical controls and static elements are created by the function

uicontrol, and menus are created by the functions uimenu and

uicontextmenu. Axes, which are used to display graphical data, are

created by the function axes.

2. Figures:- The components of a GUI must be arranged within a figure,

which is a window on the computer screen. In the past, figures have been

created automatically whenever we have plotted data. However, empty

figures can be created with the function figure and can be used to hold

any combination of components.

45

3. Callbacks:- Finally, there must be some way to perform an action if a

user clicks a mouse on a button or types information on a keyboard. A

mouse click or a key press is an event, and the MATLAB program must

respond to each event if the program is to perform its function. For

example, if a user clicks on a button, that event must cause the MATLAB

code that implements the function of the button to be executed. The code

executed in response to an event is known as a call back. There must be a

callback to implement the function of each graphical component on the

GUI.

GUIDE

To get started, type "guide" in Matlab. Let's start with a blank GUI.

Available Components

The component palette at the left side of the Layout Editor contains the

components that you can add to your GUI. You can display it with or

without names.

46

Basic Controls

 static text: text that is stuck on the screen, the user can't

edit it

 edit box: a white box that the user can type into

 Push button: performs an action when user clicks on it

 axes: something to draw upon

 slider bar: the user can slide back and forth. the current

position is given by Value, which is in between Min and

Max. the callback is triggered whenever the slider is

moved.

 check box: the user can toggle on or off

 radio button: like a check box, except only radio button

 in a group can be selected

 pop-up menu: user can select from a list of items. in the

 String property, you can type in multiple lines. The

currently selected choice number is given by Value.

 panel: a rectangle to place controls upon. useful for

47

The Property Inspector

 When you double-click on a control, it brings up a window

listing all the properties of that control (font, position, size, etc.)

 Tag : the name of the control in the code. best to rename it

to something identifiable ("PlotButton" vs "button1")

 String : the text that appears on the control

 ForegroundColor : color of the text

 BackgroundColor : color of the control

Setting and Getting Properties:

1• Return current value of an object property:

– get(handle, ‘PropertyName’)

– Example: get(handles.n1, 'string')

2• Return a list of all possible values for an object property:

48

– set(handle,’PropertyName’)

3• Set an object property to a new value:

– set(handle, ‘PropertyName’, ‘NewPropertyValue’)

– Example: set(handles.display, 'srting','hello')

4• GUIDE stores GUIs in two files, which are generated

the first time you save or run the GUI:

– .fig file - contains a complete description of the GUI figure

layout and the components of the GUI.

5• Changes to this file are made in the Layout Editor

– .m file - contains the code that controls the GUI.

6• You can program the callbacks in this file using the M-file Editor.

Writing Callbacks:

A callback is a sequence of commands that are execute when a graphics

object is activated

• Stored in the GUI’s M-file

• Is a property of a graphics object (e.g. CreateFnc, ButtonDwnFnc,

Callback, DeleteFnc)

• Also called event handler in some programming languages

A callback is usually made of the following stages:

1. Getting the handle of the object initiating the action (the object

provides event / information / values)

2. Getting the handles of the objects being affected (the object that whose

properties are to be changed)

3. Getting necessary information / values

4. Doing some calculations and processing

5. Setting relevant object properties to effect action

49

Example: Design a small calculator content 4 basic

operations?

Sol: In this article we’re going to build-up a simple adder. Our adder

(by means of a relevant callback function) is going to have two ‘edit

text’ components, two ‘static text’ components, and one ‘push button’

element.

>> guide

Choose the default option (blank GUI).

Add (drag) two ‘edit text’ boxes (which will be your inputs), two ‘static

text’ boxes (one will be just an equal sign and the other will be the

output), and add a ‘push button’ (which will be the ‘+’ sign, as in a

calculator).

Resize your elements, figure and window as necessary (by dragging their

anchors on the corners). You must end-up having something similar to

this:

Now, double-click on each element, look and modify their properties as

indicated on this table:

Component String Tag

Top Edit Text 0 n1

Bottom Edit Text 0 n2

51

Left Static Text No1 Static Text

Rigth Static Text No1 Static Text

Push-button add addbutton

You must now have something similar to this (save it with any name, for

example: adder.fig):

Before we develop the code for this interface, we must mention that there

are three very important instructions when working with GUIs: ‘get’,

‘guidata’, and ‘set’.

The ‘get’ instruction, gets the string value from an input component. For

example, if we want to get the number that the user inputs in ‘edit1’, we

can do it like this (preceed the identifier tag with ‘handles.’):

get(handles.edit1, 'String')

However, this instruction gets a string, not a number; thus, if we need to

numerically manipulate that value, we have to transform it into a number

first. For example, something typical is:

num = str2double(get(handles.edit1,'String'));

Now, our variable ‘num’ does contain a number (double), and we can

manipulate it.

The ‘set’ instruction sets the properties of the element that you indicate.

The property ‘Tag’ is the identifier to use for this purpose. Do you

remember that you have one ‘static text’ with the tag (identifier)

‘result’? We are going to modify it when the user pushes the button with

the string ‘add’. To modify the Matlab code for the components

51

displayed in your interface, right-click on any of them and choose ‘View

Callbacks’ -> ‘Callback’. You will be taken to the corresponding m-file

(there are many automatically written lines, just add the new ones). The

code will be:

% --- Executes on button press in addbutton.

function addbutton_Callback(hObject, eventdata, handles)

% hObject handle to addbutton (see GCBO)

% eventdata reserved - to be defined in a future version of

MATLAB

% handles structure with handles and user data (see

GUIDATA)

n1=str2double(get(handles.n1,'string'));

n2=str2double(get(handles.n2,'string'));

y=n1+n2;

set(handles.res,'string',num2str(y));

%%%

% --- Executes on button press in subbutton.

function subbutton_Callback(hObject, eventdata, handles)

% hObject handle to subbutton (see GCBO)

% eventdata reserved - to be defined in a future version of

MATLAB

% handles structure with handles and user data (see

GUIDATA)

n1=str2double(get(handles.n1,'string'));

n2=str2double(get(handles.n2,'string'));

y=n1-n2;

set(handles.res,'string',num2str(y));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% --- Executes on button press in divbutton.

function divbutton_Callback(hObject, eventdata, handles)

% hObject handle to divbutton (see GCBO)

% eventdata reserved - to be defined in a future version of

MATLAB

% handles structure with handles and user data (see

GUIDATA)

n1=str2double(get(handles.n1,'string'));

n2=str2double(get(handles.n2,'string'));

y=n1/n2;

set(handles.res,'string',num2str(y));

%%%

% --- Executes on button press in mulbutton.

function mulbutton_Callback(hObject, eventdata, handles)

% hObject handle to mulbutton (see GCBO)

% eventdata reserved - to be defined in a future version of

MATLAB

% handles structure with handles and user data (see

GUIDATA)

52

n1=str2double(get(handles.n1,'string'));

n2=str2double(get(handles.n2,'string'));

y=n1*n2;

set(handles.res,'string',num2str(y));

Example2: Design a plot to sin function with variable initial

and variable final value?

Sol:

Component String Tag

Top Edit Text 0 f1

Bottom Edit Text 0 f2

Top Static Text First position Static Text

Bottom Static Text Final position Static Text

Push-button1 Plot plotbutton

Push-button2 close closebutton

PLOT2 M-file for plot2.fig
% --- Executes on button press in plotbutton.

function plotbutton_Callback(hObject, eventdata, handles)

f1 = str2double(get(handles.f1,'String'));

f2 = str2double(get(handles.f2,'String'));

axes(handles.axes1) % Select the proper axes

plot([f1:0.01:f2],sin([f1:0.01:f2]))

set(handles.axes1);

grid on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% --- Executes on button press in closebutton.

function closebutton_Callback(hObject,eventdata,handles)

close(handles.figure1,'value');

53

Example3: Design a plot to sin function with variable initial

and variable final value and change the color of plot from

pop menu?

Sol:

Component String Tag

Top Edit Text 0 f1

Bottom Edit Text 0 f2

Top Static Text First position Static Text

Bottom Static Text Final position Static Text

Push-button1 Plot plotbutton

Push-button2 close closebutton

popupmenu1

Red

Green

Blue

popupmenu1

% --- Executes on button press in plotbutton.
function plotbutton_Callback(hObject, eventdata, handles)

f1 = str2double(get(handles.f1,'String'));
f2 = str2double(get(handles.f2,'String'));
data_str = get(handles.popupmenu1,'Value');
switch data_str
 case 1
 axes(handles.axes1) % Select the proper axes
 plot([f1:0.01:f2],sin([f1:0.01:f2]),'r+');
 set(handles.axes1);
 grid on
 case 2
 axes(handles.axes1) % Select the proper axes
 plot([f1:0.01:f2],sin([f1:0.01:f2]),'g+');
 set(handles.axes1);
 grid on

54

 case 3
 axes(handles.axes1) % Select the proper axes
 plot([f1:0.01:f2],sin([f1:0.01:f2]),'b+');
 set(handles.axes1);
 grid on
end

% --- Executes on button press in closebutton.
function closebutton_Callback(hObject,eventdata, handles)
close(handles.figure1,'value');

Example4: Design a plot to (sin,cos,exp) function with

variable initial and variable final value and change the color

of plot from pop menu ?

Sol:

Component String Tag

Top Edit Text 0 f1

Bottom Edit Text 0 f2

Top Static Text First position Static Text

Bottom Static Text Final position Static Text

Push-button1 Plot plotbutton

Push-button2 Close closebutton

popupmenu1

Red

Green

Blue

popupmenu1

Popupmenu2

sin

cos

Exp

Popupmenu2

55

function plotbutton_Callback(hObject, eventdata, handles)
f1 = str2double(get(handles.f1,'String'));
f2 = str2double(get(handles.f2,'String'));

data_str = get(handles.popupmenu1,'Value');
switch data_str
 case 1
 color='r+';
 case 2
 color='g+';
 case 3
 color='b+';
end

function_dat = get(handles.popupmenu2,'Value');
switch function_dat
 case 1
 axes(handles.axes1) % Select the proper axes
 plot([f1:0.01:f2],sin([f1:0.01:f2]),color);
 set(handles.axes1);
 grid on
 case 2
 axes(handles.axes1) % Select the proper axes
 plot([f1:0.01:f2],cos([f1:0.01:f2]),color);
 set(handles.axes1);
 grid on
 case 3
 axes(handles.axes1) % Select the proper axes
 plot([f1:0.01:f2],exp([f1:0.01:f2]),color);
 set(handles.axes1);
 grid on
end
%%

% --- Executes on button press in closebutton.
function closebutton_Callback(hObject,eventdata, handles)
close(handles.figure1,'value');

