Division 1: Myxomycota

Myxomycetes (slime molds) do not typically cause human disease or pose significant health risks. Here are the key points:

- 1. Myxomycetes are not known to be pathogenic or of economic importance.
- 2. Myxomycetes are not fungi, but rather free-living amoeboid organisms, despite historically being classified with fungi due to some similarities in appearance and lifestyle.
- 3. There is no evidence that Myxomycetes cause invasive infections or systemic diseases in humans.
- 4. The main potential health impact of Myxomycetes appears to be related to allergies.

Class 1: Myxomycetes

It is considered slime molds animals and called them —Mycotozoa, because the vegetative phase is like-plasmodium. They have a free-living, a cellular, multinucleate somatic plasmodium. Produce flagellated swarm cells inside a fructification sporophore that usually develops a peridium enclosing the spores. There are three types of (sporophore) reproductive organs in class Myxomycetes:

1-Sporangium: This sporangium either **bearing on stalk** or **stalkless** (sessile), each sporangium has a peridium of its own. There are spores and capilitium inside sporangium Fig: 1 Ex: *Physarum*.

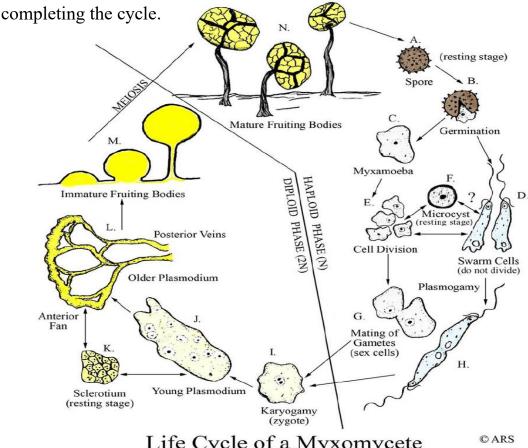
2- Plasmodiocarp:Is similar to a stalk less sporangium. In the formation of plasmodiocarp, the protoplasm concentrates around some of the main veins of the plasmodium and secreting a membrane around itself Ex: *Trichia*.

3- Aethalia: A group of sporangia that have **not** separated into individual units. Ex:

Lycogala.

Plasmodiocarp Trichia

Aethalia Lycogala


Life cycle of a typical Myxomycetes

- ➤ **Spore Stage:** The cycle begins with microscopic spores released from mature fruiting bodies. These spores are highly resistant and can remain dormant for long periods.
- ➤ Unicellular Stage: When conditions are favorable, the spores germinate to produce one to four haploid, unwalled protoplasts. These protoplasts can take two forms:
- 1. Flagellated swarm cells (in moist conditions).
- **2. Amoeboid** cells (in drier conditions).

These unicellular forms, known as **myxamoebae**, feed on bacteria and divide by binary fission.

- > **Zygote Formation:** Two compatible myxamoebae or swarm cells fuse to form a **diploid zygote**. This involves the fusion of both their protoplasm and nuclei.
- ➤ Plasmodium Stage: The zygote develops into a plasmodium a large, multinucleate cell that grows and feeds as it moves through its environment.
- ➤ Fruiting Body Formation: Under certain conditions (which are not fully understood), the plasmodium undergoes a transformation to produce one or more fruiting bodies (sporangia). These structures are typically small (1-2 mm) but visible to the naked eye.

> Spore Production: Within the fruiting bodies, new spores are produced,

Life Cycle of a Myxomycete

Classification of Class 1: Myxomycetes

This class classified into two subclasses according to the position of the spores in relation to the fruiting body.

Subclass 1: Ceratiomyxomycetidae: In this subclass spores born outside (No fruiting body)

Order: Ceratiomyxales ex: Genus: Ceratiomyxa: This genus called exospores, there is **no** sporangium.

Subclass 2: Myxogastromycetidae: In this subclass spores born inside sporangia (fruiting body) (Endospores). This subclass classified into 4 orders according to:

- 1. The color of sopres.
- 2. Presences or absence of capilitium.
- 3. Presence or absences of lime.

Order 1: Liceales: Spores in mass are pallid or brightly colored. The capilitium and columella are lacking but Pseudocapilitium is often present. The lime is absences Ex: Lycogala

Ass lec. Jihad N. Abid

Order 2: Trichiales: Spores are yellow to orange colored. The capilitium is presences and the columella is lacking. The lime is absences. Ex: *Arcyria*.

Order 3: Stemonitales: Spores are dark or black in color. The capilitium and columella are presence. Lime is absences. Ex: *Stemonitis*.

Order 4: Physarales: Spores are dark or black in color. The capilitium and columella are presence. Lime is presence. Ex: *Physarum*

Class 2: Plasmodiophoromycetes:

General characteristics:

- 1. The somatic phase is a plasmodium that develops within the host cells (Endo) parasite.
- 2. Produce two types of spores, **zoospores** and **resting spores**.
- 3. When the resting spores are germinated give zoospores.

Family: Plasmodiophoraceae /// Ex:- *Plasmodiophora brassicae*

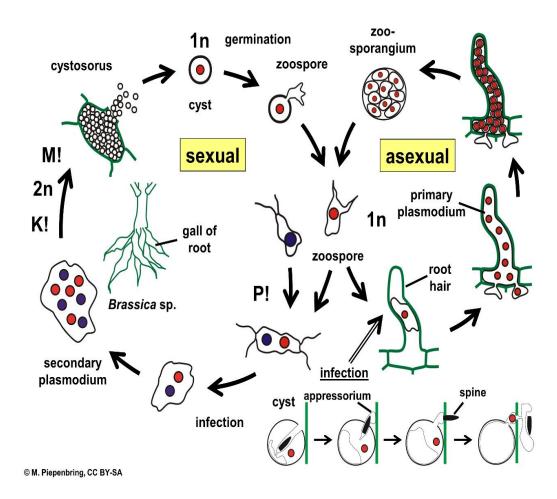
Causes: Club-root disease in Cruciferae Figure 4.

Life cycle of *Plasmodiophora brassicae*

Survival in Soil: *P. brassicae* produces thick-walled resting spores that can survive in soil for up to 15 years. These resting spores are highly resilient to harsh environmental conditions.

Primary Infection:

- 1. Resting spore germination: Chemicals released by host plant roots stimulate resting spores to germinate and release **primary zoospores**.
- 2. Root infection: Primary zoospores infect root hairs and epidermal cells in the root elongation zone.
- 3. Primary plasmodium: Inside infected cells, the pathogen forms uninucleate **primary plasmodia**.
- 4. Zoosporangia formation: The primary plasmodium undergoes nuclear division and cytoplasmic cleavage to form **zoosporangia**.


5. Secondary zoospore release: Zoosporangia produce and release 4-16 secondary zoospores.

Secondary Infection

- 1. **Cortical invasion**: Secondary zoospores penetrate and infect cortical root tissues.
- 2. Conjugation: Secondary zoospores may undergo conjugation in root epidermal cells.
- 3. **Secondary plasmodium**: The pathogen develops into uninucleate, then multinucleate secondary plasmodia in cortical cells.
- 4. **Cellular changes:** Infected cells undergo hypertrophy and abnormal cell division, leading to gall formation.

Spore Production and Release

- 1. Resting spore formation: Uninucleate resting spores form within the galls
- 2. Gall decay: As galls decay, large numbers of resting spores are released back into the soil.

