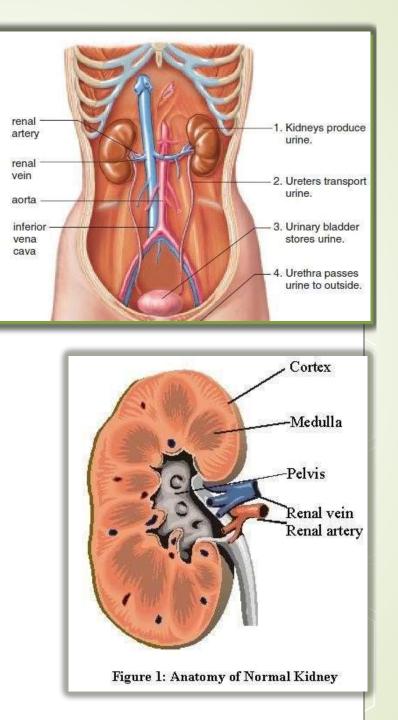

Renal Function

By Dr. Safa Ammer

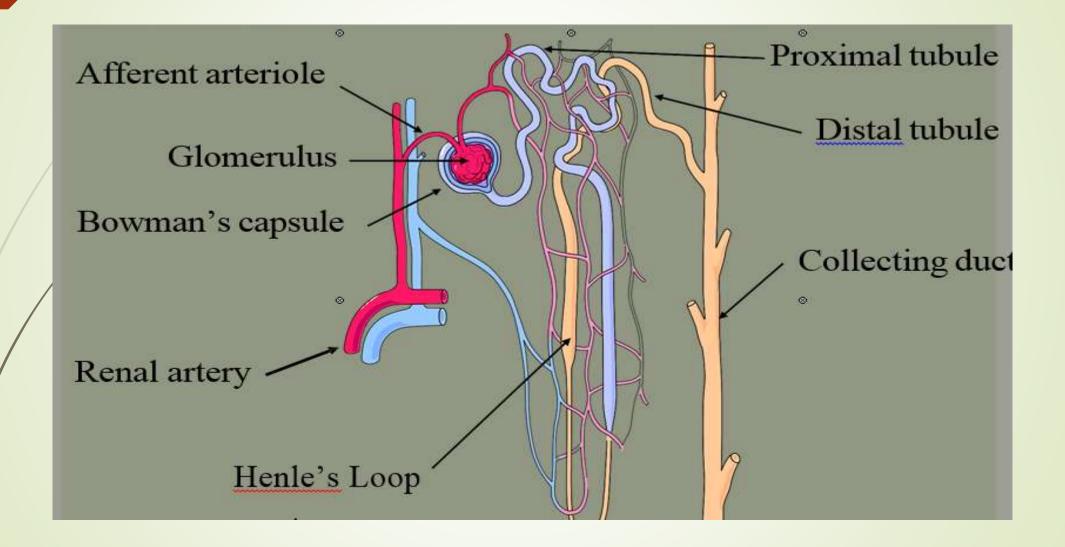


Anatomy

The kidneys are a pair of fist-sized organs that are located on either side of the spinal column.

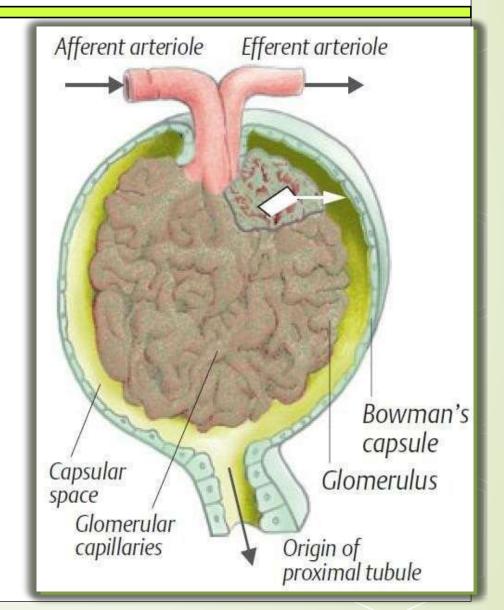
A kidney consists of an outer layer (renal cortex) and an inner region (renal medulla).

The functional unit of the kidney is the nephron.



Nephron

Structural and functional unit of the kidney **1 million nephrons per kidney**Consists of 2 parts **1. Glomerulus (filtering system)**tuft of capillaries surrounded by Bowman's capsule


2. Tubules

Nephron

Nephron - Bowman's capsule

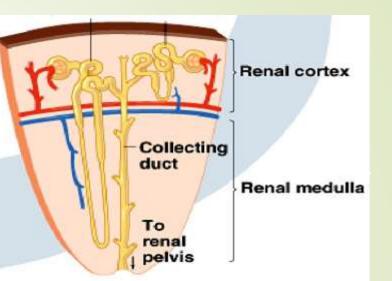
- Bowman's capsule: funnel with tubules as stem
 Blood carried to glomerulus by afferent arteriole
- Afferent arteriole divides to form capillary network.
- These capillaries reunite to form efferent arteriole, which carries blood out of the glomerulus

Nephron - Bowman's capsule

- Blood filtered in glomerulus; some water and small molecules removed
 - Size cutoff value of approximately 66,000 Da, about the molecular size of albumin.
- Glomerular filtrate collected in Bowman's capsule and enters tubules.
- Specific reabsorption occurs in tubules.
 - Most water and soluble nutrients reabsorbed.

Tubule System

Proximal convoluted tubule


- I located in the cortex
- Reabsorption of Glucose, water, amino acids, Na, Cl & others

Loop of Henle

- composed of the thin descending limb, which spans the medulla, and the ascending limb, which is located in both the medulla and the cortex,
- More water reabsorbed

Distal convoluted tubule

- I located in the cortex
- Sodium and hydrogen ion reabsorption

Tubule System

I The collecting duct

formed by two or more distal convoluted tubules as they pass back down through the cortex and the medulla to collect the urine thatdrains from each nephron.

I collecting tubules, then ureters → bladder → urethra

 1000 liter of blood through glomerulus per day; 100 liters of glomerular filtrate formed; 1 liter of urine produced

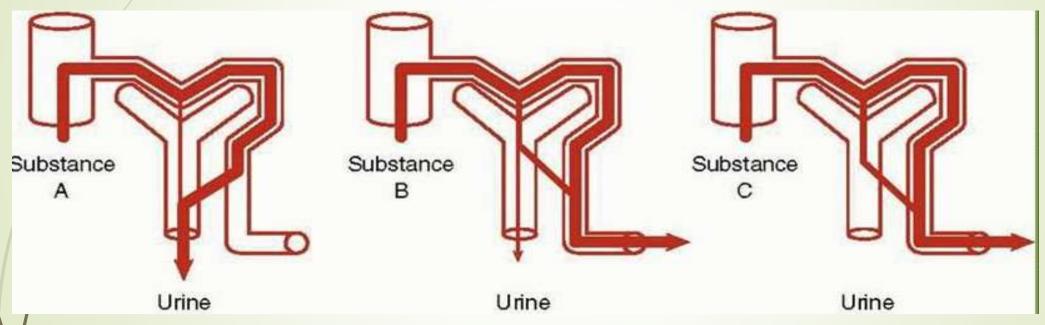
Functions of Kidney

Urine formation

Regulate body fluid, osmolality and volume

Regulate electrolyte balance

Regulate acid-base balance


Excrete waste products and foreign substances

Produce and excrete hormones

1. Urine Formation

Removal of potentially toxic waste products

- **3** processes involved:
 - **Filtration, Reabsorption, Secretion**

- Substance A is filtered and secreted, but notreabsorbed;
- Substance B is filtered and a portion reabsorbed
- Substance C is filtered and completely reabsorbed

2. Glomerular Filtration

Glomerular filtration rate (GFR) is approximately 130 mL/min

Cells and large plasma proteins unable to pass through the semipermeable membrane

Glomerular filtrate is essentially plasma without proteins.

water, electrolytes, glucose, amino acids, lowmolecular-weight proteins, urea, and creatinine, pass freely through the basement membrane and enter the proximal convoluted tubule

Proximal Convoluted Tubules

- The next part of the nephron to receive filtrate
- This filtrate contains
 - waste products,
 - and substances that are valuable to the body.
- One function of the PCT is to return the bulk of each valuable substance back to the blood circulation.
- Glucose, water, amino acids, Na, Cl & others
 Organic acids and bases, hydrogen ions and ammonia may be secreted into the tubular fluid

Proximal Convoluted Tubules

- Reabsorption may be active or passive
 Active against a concentration gradient (glucose, amino acids, low mw proteins, sodium, etc.)
 - regulated by kidney according to levels of these substances in the blood
 - Passive no energy involved water and urea
- I Tubular secretion may also be passive or active

Loop of Henle

Descending limb is highly permeable to water

- Passive reabsorption of water in descending loop
- Ascending loop is impermeable to water but actively reabsorbs sodiumand chloride
- it lowers the salt concentration

Distal Convoluted tubule

The function is to effect small adjustments to achieve electrolyte and acid-base homeostasis

- Small amount of sodium, chloride, waterare reabsorbed
- Under influence of AVP (ADH) increase water permeability of tubule (reabsorbs water)
- Potassium also reabsorbed or secreted
 - Aldosterone sodium reabsorption and potassium secretion

3. Regulation of Fluid and ElectrolyteBalance Water:

- body water (weight) remains constant day to day — ability of kidney to excrete or conservewater
- Water balance is controlled by voluntary intake (thirst) and urinary loss

Sodium:

I freely filtered through the glomerulus and reabsorbed by tubules

I Active reabsorption of Na+ results in passive transport of Cl- and bicarbonate and passive reabsorption of water.

Regulation of Fluid and Electrolyte Balance

Potassium:

Both the distal convoluted tubule and the collecting ducts can reabsorb and excrete potassium, and this excretion is controlled by aldosterone

Chloride:

- parallels sodium
- but reabsorption is passive in proximal tubules
- and active in distal tubules and collecting duct

4. Acid-Base Balance

Secretion of hydrogen ions from tubular cells

Hydrogen ions generated in proximal and distal tubules as a result of carbonic acid

 $H_2O+CO_2 \rightarrow H_2CO_3 \rightarrow H + HCO_3$

- React with bicarbonate ions
- React with buffers phosphate ions
- React with ammonia (deamination of gluatamine) to form ammonium ion
- Excretion as free hydrogen ions

5. Nitrogenous Waste Excretion

When low GFR, levels of nitrogenous wastes increase in blood — NPN's

I Urea

- I Creatinine
- Uric Acid

6. Primary Endocrine Functions

Kidneys synthesize renin, prostaglandins and erythropoietin

Renin:

- Renin is the initial member of the reninangiotensin-aldosterone system
- I help regulate sodium and potassium in the blood, fluid levels in the body, andblood pressure.

A group of potent cyclic fatty acids Behave like hormones Prostaglandins produced by the kidney increase renal blood flow, sodium & water excretion

They oppose renal vasoconstriction due to angiotensin

Erythropoietin

- It is a single chain polypeptide.
- It is produced by cells close to the proximaltubules.
- Its production is regulated by blood oxygen levels "hypoxia increases its production".
- Erythropoietin acts on the erythroid progenitor cells in the bone marrow, causing their maturation and increasing the number of RBCs.
- In chronic renal insufficiency, erythropoietin production is significantly reduced causinganemia.

Secondary Endocrine Functions

The kidneys are the target locus for the action of aldosterone

For the catabolism of insulin, glucagonand aldosterone The point of activation for vitamin D.

Renal Disorders

Acute Glomerulonephritis
Nephrotic Syndrome
Tubular Diseases
Urinary Tract Infection
Acute Renal Failure

1. Acute inflammation of the glomeruli

 Results in oliguria, hematuria, increased BUN and serum creatinine, decreased GFR and hypertension
 Red cell cast finding are of great importance
 Proteinuria also present

2. Nephrotic Syndrome

- Massive proteinuria, edema, hypoalbuminemia, hyperlipidemia, and lipiduria
- Has many cuases

Characterized by increased glomerular membrane permeability —loss of protein (greater than 2-3 grams per day)

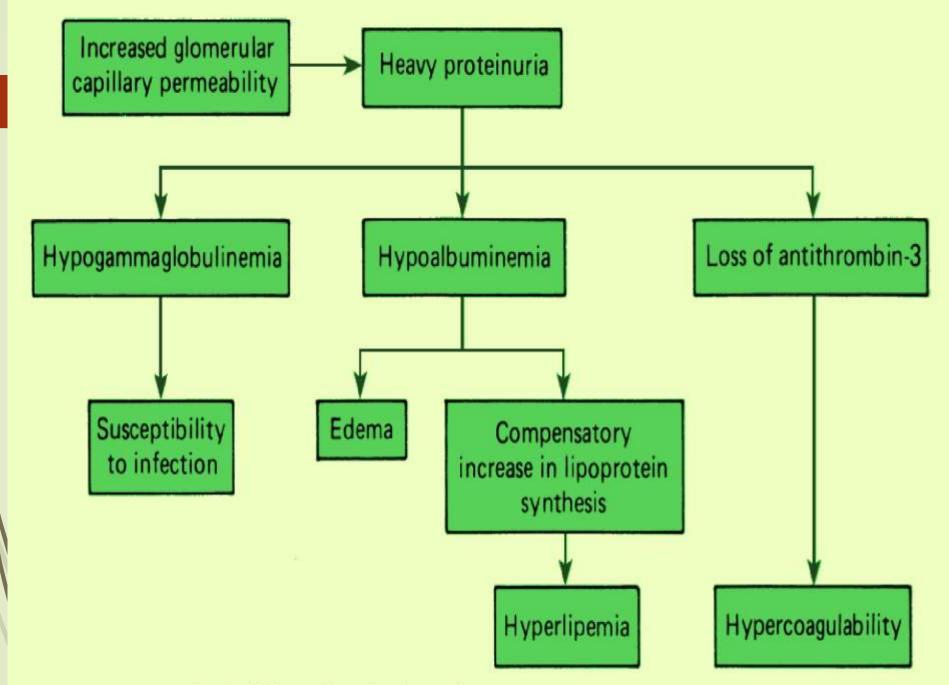


FIGURE 26-6. Pathophysiology of nephrotic syndrome.

3. Tubular Diseases

Depressed secretion or reabsorption of specific biochemicals
 Or Impairment of urine dilution and concentration mechanisms
 Renal Tubular Acidosis — most important
 Low values of phosphorus in serum, and presence of glucose and aminoacids in urine

4. Urinary Tract Infection

- Bladder cystitis
- Kidneys pyelonephritis
- Bacterial concentrations >100,000 colonies/mL is considered diagnostic for infection
- **Increased number of white blood cells**
- Increased number of red blood cells may be present
- White blood cell casts is considered diagnostic of pyelonephritis

5. Acute Renal Failure

Defined as occurring when the GFR is reduced to less than 10 mL/minute.

Prerenal — before blood reaches the kidney

- I Hypovolemia
- Cardiovascular failure

Renal — occurring in kidney

- Acute tubular necrosis
- Glomerulonephritis

Post renal — after urine leaves kidney

Obstruction

5- Acute Renal Failure -continued

Usually accompanied by

oliguria

varying degrees of proteinuria,

hematuria, and presence of red cell casts and other casts

BUN and creatinine increase rapidly

Can progress to chronic renal insufficiency or failure

Renal Function Tests

Tests of Glomerular Function Creatinine Clearance Most sensitive method of assessing renal function **Tests of Tubular Function Concentration** — Dilution Studies Non-protein nitrogen compounds Urea nitrogen Creatinine Uric acid Urinalysis and Microscopy pH, Chemical Analyses (glucose, protein, 0 bilirubin/urobilinogen & others)