
Parallel Circuits

6.1 INTRODUCTION

Two network configurations, series and parallel, form the framework
for some of the most complex network structures. A clear understand-
ing of each will pay enormous dividends as more complex methods and
networks are examined. The series connection was discussed in detail
in the last chapter. We will now examine the parallel circuit and all the
methods and laws associated with this important configuration.

6.2 PARALLEL ELEMENTS

Two elements, branches, or networks are in parallel if they have two
points in common.

In Fig. 6.1, for example, elements 1 and 2 have terminals a and b in
common; they are therefore in parallel.

b

1

a

2

FIG. 6.1

Parallel elements.

In Fig. 6.2, all the elements are in parallel because they satisfy the
above criterion. Three configurations are provided to demonstrate how
the parallel networks can be drawn. Do not let the squaring of the con-
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nection at the top and bottom of Fig. 6.2(a) and (b) cloud the fact that
all the elements are connected to one terminal point at the top and bot-
tom, as shown in Fig. 6.2(c).

In Fig. 6.3, elements 1 and 2 are in parallel because they have ter-
minals a and b in common. The parallel combination of 1 and 2 is then
in series with element 3 due to the common terminal point b.

In Fig. 6.4, elements 1 and 2 are in series due to the common point
a, but the series combination of 1 and 2 is in parallel with element 3 as
defined by the common terminal connections at b and c.

In Figs. 6.1 through 6.4, the numbered boxes were used as a general
symbol representing single resistive elements, or batteries, or complex
network configurations.

Common examples of parallel elements include the rungs of a lad-
der, the tying of more than one rope between two points to increase the
strength of the connection, and the use of pipes between two points to
split the water between the two points at a ratio determined by the area
of the pipes.

6.3 TOTAL CONDUCTANCE AND RESISTANCE

Recall that for series resistors, the total resistance is the sum of the
resistor values.

For parallel elements, the total conductance is the sum of the
individual conductances.

That is, for the parallel network of Fig. 6.5, we write

(6.1)

Since increasing levels of conductance will establish higher current
levels, the more terms appearing in Eq. (6.1), the higher the input cur-

GT � G1 � G2 � G3 � . . .� GN
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FIG. 6.2

Different ways in which three parallel elements may appear.

a b 3
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FIG. 6.3

Network in which 1 and 2 are in parallel and
3 is in series with the parallel combination of

1 and 2.
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FIG. 6.4

Network in which 1 and 2 are in series and 3
is in parallel with the series combination of 

1 and 2.

G1 G2 G3 GN
GT

FIG. 6.5

Determining the total conductance of parallel conductances.
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rent level. In other words, as the number of resistors in parallel
increases, the input current level will increase for the same applied volt-
age—the opposite effect of increasing the number of resistors in series.

Substituting resistor values for the network of Fig. 6.5 will result in
the network of Fig. 6.6. Since G � 1/R, the total resistance for the net-
work can be determined by direct substitution into Eq. (6.1):

P

R1
RT R2 R3

FIG. 6.6

Determining the total resistance of parallel resistors.

(6.2)

Note that the equation is for 1 divided by the total resistance rather than
the total resistance. Once the sum of the terms to the right of the equals
sign has been determined, it will then be necessary to divide the result
into 1 to determine the total resistance. The following examples will
demonstrate the additional calculations introduced by the inverse rela-
tionship.

EXAMPLE 6.1 Determine the total conductance and resistance for the
parallel network of Fig. 6.7.

Solution:

GT � G1 � G2 � � � 0.333 S � 0.167 S � 0.5 S

and RT � �
G
1

T
� � � 2 �

EXAMPLE 6.2 Determine the effect on the total conductance and
resistance of the network of Fig. 6.7 if another resistor of 10 � were
added in parallel with the other elements.

Solution:

GT � 0.5 S � � 0.5 S � 0.1 S � 0.6 S

RT � �
G
1

T
� � � 1.667 �

Note, as mentioned above, that adding additional terms increases the
conductance level and decreases the resistance level.

1
�
0.6 S

1
�
10 �

1
�
0.5 S

1
�
6 �

1
�
3 �

�
R
1

T
� � �

R
1

1
� � �

R
1

2
� � �

R
1

3
� � . . .� �

R
1

N
�

R1

RT

R2 6 Ω
GT

3 Ω

FIG. 6.7

Example 6.1.
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Solution:

�
R
1

T
� � � �

� � � � 0.5 S � 0.25 S � 0.2 S

� 0.95 S

and RT � � 1.053 �

The above examples demonstrate an interesting and useful (for
checking purposes) characteristic of parallel resistors:

The total resistance of parallel resistors is always less than the value
of the smallest resistor.

In addition, the wider the spread in numerical value between two paral-
lel resistors, the closer the total resistance will be to the smaller resis-
tor. For instance, the total resistance of 3 � in parallel with 6 � is 2 �,
as demonstrated in Example 6.1. However, the total resistance of 3 � in
parallel with 60 � is 2.85 �, which is much closer to the value of the
smaller resistor.

For equal resistors in parallel, the equation becomes significantly
easier to apply. For N equal resistors in parallel, Equation (6.2) becomes

�
R
1

T
� � �

R
1

� � �
R
1

� � �
R
1

� � . . . � �
R
1

�

N

� N� �

and (6.3)

In other words, the total resistance of N parallel resistors of equal value
is the resistance of one resistor divided by the number (N) of parallel
elements.

For conductance levels, we have

(6.4)GT � NG

RT � �
N
R

�

1
�
R

1
�
0.95 S

1
�
5 �

1
�
4 �

1
�
2 �

1
�
R3

1
�
R2

1
�
R1

P

R1

RT

R3 5 Ω2 ΩR2

RT
R3  =  5 Ω

4 ΩR1  =  2 Ω R2 4 Ω=

FIG. 6.8

Example 6.3.

EXAMPLE 6.3 Determine the total resistance for the network of 
Fig. 6.8.


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EXAMPLE 6.4

a. Find the total resistance of the network of Fig. 6.9.
b. Calculate the total resistance for the network of Fig. 6.10.

Solutions:

a. Figure 6.9 is redrawn in Fig. 6.11:

P

R1 12 �RT R2 12 � R3 12 �

FIG. 6.9

Example 6.4: three parallel resistors 
of equal value.

R1 2 � R2 R3 R42 � 2 � 2 �

RT

FIG. 6.10

Example 6.4: four parallel resistors 
of equal value.

R1 12 � R2 R312 � 12 �RT

FIG. 6.11

Redrawing the network of Fig. 6.9.

R1 2 � R2 R3 R42 � 2 � 2 �RT

FIG. 6.12

Redrawing the network of Fig. 6.10.

RT � � � 4 �

b. Figure 6.10 is redrawn in Fig. 6.12:

RT � � � 0.5 �

In the vast majority of situations, only two or three parallel resistive
elements need to be combined. With this in mind, the following equa-
tions were developed to reduce the effects of the inverse relationship
when determining RT.

For two parallel resistors, we write

� �

Multiplying the top and bottom of each term of the right side of the
equation by the other resistor will result in

� � � � � � � �

�

and (6.5)

In words,

the total resistance of two parallel resistors is the product of the two
divided by their sum.

For three parallel resistors, the equation for RT becomes

RT � (6.6a)

requiring that we be careful with all the divisions into 1.

1
��

�
R
1

1
� � �

R
1

2
� � �

R
1

3
�

RT � �
R1

R

�
1R2
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�

R2 � R1
��

R1R2

R1
�
R1R2
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�
R1R2
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�
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�
R1
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�
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�
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�
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�
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�
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2 �
�
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�
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�
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Equation (6.6a) can also be expanded into the form of Eq. (6.5),
resulting in Eq. (6.6b):

RT � (6.6b)

with the denominator showing all the possible product combinations
of the resistors taken two at a time. An alternative to either form of Eq.
(6.6) is to simply apply Eq. (6.5) twice, as will be demonstrated in
Example 6.6.

EXAMPLE 6.5 Repeat Example 6.1 using Eq. (6.5).

Solution:

RT � � � � 2 �

EXAMPLE 6.6 Repeat Example 6.3 using Eq. (6.6a).

Solution:

RT �

� � �
0.5 � 0

1
.25 � 0.2
�

� � 1.053 �

Applying Eq. (6.5) twice yields

R ′T � 2 � �� 4 � � � �
4
�
3

(2 �)(4 �)
��
2 � � 4 �

1
�
0.95

1
���

�
2

1
�
� � �

4
1
�
� � �

5
1
�
�

1
��

�
R
1

1
� � �

R
1

2
� � �

R
1

3
�

18 �
�

9
(3 �)(6 �)
��
3 � � 6 �

R1R2
�
R1 � R2

R1R2R3
���
R1R2 � R1R3 � R2R3

P

RT � R ′T �� 5 � � � 1.053 �

Recall that series elements can be interchanged without affecting the
magnitude of the total resistance or current. In parallel networks,

parallel elements can be interchanged without changing the total
resistance or input current.

Note in the next example how redrawing the network can often clarify
which operations and equations should be applied.

EXAMPLE 6.7 Calculate the total resistance of the parallel network of
Fig. 6.13.

��
4
3

� ���5 ��
��

�
4
3

� � � 5 �
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R ′T � �
N
R

� � � 2 �

R″T � �
R2

R
�
2R4

R4
� � � � 8 �

and RT � R′T �� R″T

� � � � 1.6 �

The preceding examples show direct substitution, in which once the
proper equation is defined, it is only a matter of plugging in the num-
bers and performing the required algebraic maneuvers. The next two
examples have a design orientation, where specific network parameters
are defined and the circuit elements must be determined.

EXAMPLE 6.8 Determine the value of R2 in Fig. 6.15 to establish a
total resistance of 9 k�.

Solution:

RT �

RT (R1 � R2) � R1R2

RT R1 � RT R2 � R1R2

RT R1 � R1R2 � RT R2

RT R1 � (R1 � RT)R2

and (6.7)R2 � �
R1

RT

�

R

R
1

T
�

R1R2
�
R1 � R2

16 �
�

10

(2 �)(8 �)
��
2 � � 8 �

R′TR″T
��
R′T � R″T

In parallel with

648 �
�

81

(9 �)(72 �)
��
9 � � 72 �

6 �
�

3

P

RT

R1 6 � R2 9 � R3 6 � R4 72 � R5 6 �

FIG. 6.13

Example 6.7.

RT R1 6 � R3 6 � R5 6 � R2 72 �R49 �

R′T R″T

FIG. 6.14

Network of Fig. 6.13 redrawn.

R2R1 12 k�
RT  =  9 k�

FIG. 6.15

Example 6.8.

Solution: The network is redrawn in Fig. 6.14:
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Substituting values:

R2 �

� � 36 k�

EXAMPLE 6.9 Determine the values of R1, R2, and R3 in Fig. 6.16 if
R2 � 2R1 and R3 � 2R2 and the total resistance is 16 k�.

Solution:

�
R
1

T
� � � �

� � �

since R3 � 2R2 � 2(2R1) � 4R1

and � � � � � � �

� 1.75� �
with R1 � 1.75(16 k�) � 28 k�

Recall for series circuits that the total resistance will always increase
as additional elements are added in series.

For parallel resistors, the total resistance will always decrease as
additional elements are added in parallel.

The next example demonstrates this unique characteristic of parallel
resistors.

EXAMPLE 6.10

a. Determine the total resistance of the network of Fig. 6.17.
b. What is the effect on the total resistance of the network of Fig. 6.17

if an additional resistor of the same value is added, as shown in Fig.
6.18?

c. What is the effect on the total resistance of the network of Fig. 6.17
if a very large resistance is added in parallel, as shown in Fig. 6.19?

d. What is the effect on the total resistance of the network of Fig. 6.17
if a very small resistance is added in parallel, as shown in Fig. 6.20?

Solutions:

a. RT � 30 � � 30 � � � 15 �

b. RT � 30 � � 30 � � 30 � � � 10 � � 15 �

RT decreased

c. RT � 30 � � 30 � � 1 k� � 15 � � 1 k�

� � 14.778 � � 15 �

Small decrease in RT

(15 �)(1000 �)
��
15 � � 1000 �

30 �
�

3

30 �
�

2

1
�
R1

1
�
16 k�

1
�
R1

1
�
4

1
�
R1

1
�
2

1
�
R1

1
�
16 k�

1
�
4R1

1
�
2R1

1
�
R1

1
�
16 k�

1
�
R3

1
�
R2

1
�
R1

108 k�
�

3

(9 k�)(12 k�)
��
12 k� � 9 k�

P

R1 30 � R2RT 30 �

FIG. 6.17

Example 6.10: two equal, parallel resistors.

R2RT 30 �R1 30 � R3 30 �

FIG. 6.18

Adding a third parallel resistor of equal value
to the network of Fig. 6.17.

R2RT 30 �R1 30 � R3 1 k�

FIG. 6.19

Adding a much larger parallel resistor to the
network of Fig. 6.17.

R2RT 30 �R1 30 � R3 0.1 �

FIG. 6.20

Adding a much smaller parallel resistor to the 
network of Fig. 6.17.

R3RT  =  16 k�
R2R1

FIG. 6.16

Example 6.9.
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d. RT � 30 � � 30 � � 0.1 � � 15 � � 0.1 �

� � 0.099 � � 15 �

Significant decrease in RT

In each case the total resistance of the network decreased with the
increase of an additional parallel resistive element, no matter how large
or small. Note also that the total resistance is also smaller than that of
the smallest parallel element.

6.4 PARALLEL CIRCUITS

The network of Fig. 6.21 is the simplest of parallel circuits. All the ele-
ments have terminals a and b in common. The total resistance is deter-
mined by RT � R1R2 /(R1 � R2), and the source current by Is � E/RT.
Throughout the text, the subscript s will be used to denote a property of
the source. Since the terminals of the battery are connected directly
across the resistors R1 and R2, the following should be obvious:

The voltage across parallel elements is the same.

Using this fact will result in

V1 � V2 � E

and I1 � �

with I2 � �

If we take the equation for the total resistance and multiply both
sides by the applied voltage, we obtain

E� � � E� � �
and � �

Substituting the Ohm’s law relationships appearing above, we find that
the source current

Is � I1 � I2

permitting the following conclusion:

For single-source parallel networks, the source current (Is ) is equal
to the sum of the individual branch currents.

The power dissipated by the resistors and delivered by the source
can be determined from

P1 � V1I1 � I2
1R1 �

P2 � V2I2 � I2
2R2 �

Ps � EIs � I2
sRT �

E2

�
RT

V 2
2

�
R2

V 2
1

�
R1

E
�
R2

E
�
R1

E
�
RT

1
�
R2

1
�
R1

1
�
RT

E
�
R2

V2
�
R2

E
�
R1

V1
�
R1

(15 �)(0.1 �)
��
15 � � 0.1 �

P

R1

–

 +

V1E V2 R2

I2I1

RT

Is

a

b

–

 +

FIG. 6.21

Parallel network.
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EXAMPLE 6.11 For the parallel network of Fig. 6.22:

a. Calculate RT.
b. Determine Is.
c. Calculate I1 and I2, and demonstrate that Is � I1 � I2.
d. Determine the power to each resistive load.
e. Determine the power delivered by the source, and compare it to the

total power dissipated by the resistive elements.

Solutions:

a. RT � � � � 6 �

b. Is � � � 4.5 A

c. I1 � � � � 3 A

I2 � � � � 1.5 A

Is � I1 � I2

4.5 A � 3 A � 1.5 A

4.5 A � 4.5 A (checks)

d. P1 � V1I1 � EI1 � (27 V)(3 A) � 81 W
P2 � V2I2 � EI2 � (27 V)(1.5 A) � 40.5 W

e. Ps � EIs � (27 V)(4.5 A) � 121.5 W
� P1 � P2 � 81 W � 40.5 W � 121.5 W

EXAMPLE 6.12 Given the information provided in Fig. 6.23:

27 V
�
18 �

E
�
R2

V2
�
R2

27 V
�
9 �

E
�
R1

V1
�
R1

27 V
�
6 �

E
�
RT

162 �
�

27
(9 �)(18 �)
��
9 � � 18 �

R1R2
�
R1 � R2

P

I2

R3R1 R210 � 20 �E
 –

 +

Is

RT  =  4 � I1  =  4 A

FIG. 6.23

Example 6.12.

a. Determine R3.
b. Calculate E.
c. Find Is.
d. Find I2.
e. Determine P2.

Solutions:

a. � � �

� � �
1

�
R3

1
�
20 �

1
�
10 �

1
�
4 �

1
�
R3

1
�
R2

1
�
R1

1
�
RT

R1 V1E R2

I2I1

RT

Is

–

 +

9 � V218 �

–

 +

27 V

FIG. 6.22

Example 6.11.
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0.25 S � 0.1 S � 0.05 S �

0.25 S � 0.15 S �

� 0.1 S

R3 � � 10 �

b. E � V1 � I1R1 � (4 A)(10 �) � 40 V

c. Is � � � 10 A

d. I2 � � � � 2 A

e. P2 � I2
2R2 � (2 A)2(20 �) � 80 W

Mathcad Solution: This example provides an excellent opportunity
to practice our skills using Mathcad. As shown in Fig. 6.24, the known
parameters and quantities of the network are entered first, followed by
an equation for the unknown resistor R3. Note that after the first divi-
sion operator was selected, a left bracket was established (to be fol-
lowed eventually by a right enclosure bracket) to tell the computer that
the mathematical operations in the denominator must be carried out first
before the division into 1. In addition, each individual division into 1 is
separated by brackets to ensure that the division operation is performed
before each quantity is added to the neighboring factor. Finally, keep in
mind that the Mathcad bracket must encompass each individual expres-
sion of the denominator before you place the right bracket in place.

40 V
�
20 �

E
�
R2

V2
�
R2

40 V
�
4 �

E
�
RT

1
�
0.1 S

1
�
R3

1
�
R3

1
�
R3

P

FIG. 6.24

Using Mathcad to confirm the results of Example 6.12.

eng
Sticky Note
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In each case, the quantity of interest was entered below the defining
equation to obtain the numerical result by selecting an equal sign. As
expected, all the results match the longhand solution.

6.5 KIRCHHOFF’S CURRENT LAW

Kirchhoff’s voltage law provides an important relationship among volt-
age levels around any closed loop of a network. We now consider
Kirchhoff’s current law (KCL), which provides an equally important
relationship among current levels at any junction.

Kirchhoff’s current law (KCL) states that the algebraic sum of the
currents entering and leaving an area, system, or junction is zero.

In other words,

the sum of the currents entering an area, system, or junction must
equal the sum of the currents leaving the area, system, or junction.

In equation form:

(6.8)

In Fig. 6.25, for instance, the shaded area can enclose an entire sys-
tem, a complex network, or simply a junction of two or more paths. In
each case the current entering must equal that leaving, as witnessed by
the fact that

I1 � I4 � I2 � I3

4 A � 8 A � 2 A � 10 A
12 A � 12 A

The most common application of the law will be at the junction of
two or more paths of current flow, as shown in Fig. 6.26. For some stu-
dents it is difficult initially to determine whether a current is entering or
leaving a junction. One approach that may help is to picture yourself as
standing on the junction and treating the path currents as arrows. If the
arrow appears to be heading toward you, as is the case for I1 in Fig.
6.26, then it is entering the junction. If you see the tail of the arrow
(from the junction) as it travels down its path away from you, it is leav-
ing the junction, as is the case for I2 and I3 in Fig. 6.26.

Applying Kirchhoff’s current law to the junction of Fig. 6.26:

Σ Ientering � Σ Ileaving

6 A � 2 A � 4 A
6 A � 6 A (checks)

In the next two examples, unknown currents can be determined by
applying Kirchhoff’s current law. Simply remember to place all cur-
rent levels entering a junction to the left of the equals sign and the
sum of all currents leaving a junction to the right of the equals sign.
The water-in-the-pipe analogy is an excellent one for supporting and
clarifying the preceding law. Quite obviously, the sum total of the
water entering a junction must equal the total of the water leaving the
exit pipes.

In technology the term node is commonly used to refer to a junction
of two or more branches. Therefore, this term will be used frequently in
the analyses that follow.

Σ Ientering � Σ Ileaving

P

System,
complex
network,
junction

I2

I3

I4

I1
4 A 2 A

10 A

8 A

FIG. 6.25

Introducing Kirchhoff’s current law.

I1 = 6 A

I3 = 4 A

I2 = 2 A

FIG. 6.26

Demonstrating Kirchhoff’s current law.
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EXAMPLE 6.13 Determine the currents I3 and I4 of Fig. 6.27 using
Kirchhoff’s current law.

Solution: We must first work with junction a since the only un-
known is I3. At junction b there are two unknowns, and both cannot be
determined from one application of the law.

P

I3

I5 = 1 A

I4

b

I1 = 2 A

I2 = 3 A

a

FIG. 6.27

Example 6.13.

R1 R3

R2 R4
R5

I2  =  4 A

I  =  5 A
I5

a

I1 I3

I4

b

d

c

FIG. 6.28

Example 6.14.

At a:

Σ Ientering � Σ Ileaving

I1 � I2 � I3

2 A � 3 A � I3

I3 � 5 A

At b:

Σ Ientering � Σ Ileaving

I3 � I5 � I4

5 A � 1 A � I4

I4 � 6 A

EXAMPLE 6.14 Determine I1, I3, I4, and I5 for the network of Fig.
6.28.

Solution: At a:

Σ Ientering � Σ Ileaving

I � I1 � I2

5 A � I1 � 4 A

Subtracting 4 A from both sides gives

5 A � 4 A � I1 � 4 A � 4 A
I1 � 5 A � 4 A � 1 A
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At b:

Σ Ientering � Σ Ileaving

I1 � I3 � 1 A

as it should, since R1 and R3 are in series and the current is the same in
series elements.

At c:

I2 � I4 � 4 A

for the same reasons given for junction b.
At d:

Σ Ientering � Σ Ileaving

I3 � I4 � I5

1 A � 4 A � I5

I5 � 5 A

If we enclose the entire network, we find that the current entering is
I � 5 A; the net current leaving from the far right is I5 � 5 A. The two
must be equal since the net current entering any system must equal that
leaving.

EXAMPLE 6.15 Determine the currents I3 and I5 of Fig. 6.29 through
applications of Kirchhoff’s current law.

Solution: Note that since node b has two unknown quantities and
node a has only one, we must first apply Kirchhoff’s current law to
node a. The result can then be applied to node b.

For node a,

I1 � I2 � I3

4 A � 3 A � I3

and I3 � 7 A

For node b,

I3 � I4 � I5

7 A � 1 A � I5

and I5 � 7 A � 1 A � 6 A

EXAMPLE 6.16 Find the magnitude and direction of the currents I3,
I4, I6, and I7 for the network of Fig. 6.30. Even though the elements are
not in series or parallel, Kirchhoff’s current law can be applied to deter-
mine all the unknown currents.

Solution: Considering the overall system, we know that the current
entering must equal that leaving. Therefore,

I7 � I1 � 10 A

Since 10 A are entering node a and 12 A are leaving, I3 must be sup-
plying current to the node. 

Applying Kirchhoff’s current law at node a,

I1 � I3 � I2

10 A � I3 � 12 A

and I3 � 12 A � 10 A � 2 A

At node b, since 12 A are entering and 8 A are leaving, I4 must be
leaving. Therefore,

P

b

I2 = 3 A

I4 = 1 A

I5

a

I1 = 4 A

I3

FIG. 6.29

Example 6.15.

I2 = 12 A

I1 = 10 A

I5 = 8 A

I3 I6

I7d

c

a

b

I4

FIG. 6.30

Example 6.16.
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I2 � I4 � I5

12 A � I4 � 8 A

and I4 � 12 A � 8 A � 4 A

At node c, I3 is leaving at 2 A and I4 is entering at 4 A, requiring that
I6 be leaving. Applying Kirchhoff’s current law at node c,

I4 � I3 � I6

4 A � 2 A � I6

and I6 � 4 A � 2 A � 2 A

As a check at node d,

I5 � I6 � I7

8 A � 2 A � 10 A
10 A � 10 A (checks)

Looking back at Example 6.11, we find that the current entering the
top node is 4.5 A and the current leaving the node is I1 � I2 � 3 A �
1.5 A � 4.5 A. For Example 6.12, we have

Is � I1 � I2 � I3

10 A � 4 A � 2 A � I3

and I3 � 10 A � 6 A � 4 A

The application of Kirchhoff’s current law is not limited to networks
where all the internal connections are known or visible. For instance, all
the currents of the integrated circuit of Fig. 6.31 are known except I1.
By treating the system as a single node, we can apply Kirchhoff’s cur-
rent law using the following values to ensure an accurate listing of all
known quantities:

Ii Io

10 mA 5 mA
4 mA 4 mA
8 mA 2 mA

22 mA 6 mA
17 mA

Noting the total input current versus that leaving clearly reveals that I1

is a current of 22 mA � 17 mA � 5 mA leaving the system.

6.6 CURRENT DIVIDER RULE

As the name suggests, the current divider rule (CDR) will determine
how the current entering a set of parallel branches will split between the
elements.

For two parallel elements of equal value, the current will divide
equally.

For parallel elements with different values, the smaller the resistance,
the greater the share of input current.

For parallel elements of different values, the current will split with a
ratio equal to the inverse of their resistor values.

For example, if one of two parallel resistors is twice the other, then
the current through the larger resistor will be half the other.

P

5 mA 10 mA

4 mA

4 mA

8 mA2 mA

6 mA

I1

20 V

IC

FIG. 6.31

Integrated circuit.
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In Fig. 6.32, since I1 is 1 mA and R1 is six times R3, the current
through R3 must be 6 mA (without making any other calculations
including the total current or the actual resistance levels). For R2 the
current must be 2 mA since R1 is twice R2. The total current must then
be the sum of I1, I2, and I3, or 9 mA. In total, therefore, knowing only
the current through R1, we were able to find all the other currents of the
configuration without knowing anything more about the network.

P

For networks in which only the resistor values are given along with the
input current, the current divider rule should be applied to determine the
various branch currents. It can be derived using the network of Fig. 6.33.

1 mA

R1 6 � R2 3 � R3 1 �

IT = 9 mA

I3 must be 6 mA (      = 6)R1

R3

I2 must be 2 mA (      = 2)R1

R2
I1 =

FIG. 6.32

Demonstrating how current will divide between unequal resistors.

V R1 R2 R3 RNRT

I

I1 I2 I3 IN

+

–

FIG. 6.33

Deriving the current divider rule.

The input current I equals V/RT, where RT is the total resistance of the
parallel branches. Substituting V � IxRx into the above equation, where Ix

refers to the current through a parallel branch of resistance Rx, we have

I � �

and (6.9)

which is the general form for the current divider rule. In words, the cur-
rent through any parallel branch is equal to the product of the total
resistance of the parallel branches and the input current divided by the
resistance of the branch through which the current is to be determined.

For the current I1,

I1 � I

and for I2,

I2 � I

and so on.

RT
�
R2

RT
�
R1

Ix � �
R

R
T

x
�I

IxRx
�
RT

V
�
RT
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For the particular case of two parallel resistors, as shown in Fig.
6.34,

RT �

and I1 � I � I

and (6.10)

Similarly for I2,

(6.11)

In words, for two parallel branches, the current through either branch is
equal to the product of the other parallel resistor and the input current
divided by the sum (not the total parallel resistance) of the two parallel
resistances.

EXAMPLE 6.17 Determine the current I2 for the network of Fig. 6.35
using the current divider rule.

Solution:

I2 � � � �
1
4
2
�(6 A) � �

1
3

�(6 A)

� 2 A

EXAMPLE 6.18 Find the current I1 for the network of Fig. 6.36.

(4 k�)(6 A)
��
4 k� � 8 k�

R1Is
��
R1 � R2

I1

R2I

R1 � R2
�

I2

R1I

R1 � R2
�

Note difference in subscripts.

R1R2
�
—
R1

R
�

1

R2—
RT
�
R1

R1R2
�
R1 � R2

P

R1 R2

I2

Is  =  6 A

Is  =  6 A

4 k� 8 k�

FIG. 6.35

Example 6.17.

R1 R2

RT

I  =  42 mA

I1

R36 � 24 � 48 �

FIG. 6.36

Example 6.18

Solution: There are two options for solving this problem. The first is
to use Eq. (6.9) as follows:

� � � � 0.1667 S � 0.0417 S � 0.0208 S

� 0.2292 S

1
�
48 �

1
�
24 �

1
�
6 �

1
�
RT

R1 R2

I

I1 I2

FIG. 6.34

Developing an equation for current division 
between two parallel resistors.
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and RT � � 4.363 �

with I1 � I � (42 mA) � 30.54 mA

The second option is to apply Eq. (6.10) once after combining R2

and R3 as follows:

24 � � 48 � � � 16 �

and I1 � � 30.54 mA

Both options generated the same answer, leaving you with a choice
for future calculations involving more than two parallel resistors.

EXAMPLE 6.19 Determine the magnitude of the currents I1, I2, and I3

for the network of Fig. 6.37.

16 �(42 mA)
��
16 � � 6 �

(24 �)(48 �)
��
24 � � 48 �

4.363 �
�

6 �

RT
�
R1

1
�
0.2292 S

P

Solution: By Eq. (6.10), the current divider rule,

I1 � �
R1

R
�
2 I

R2
� � � 8 A

Applying Kirchhoff’s current law,

I � I1 � I2

and I2 � I � I1 � 12 A � 8 A � 4 A

or, using the current divider rule again,

I2 � �
R1

R
�

1I
R2

� � � 4 A

The total current entering the parallel branches must equal that leaving.
Therefore,

I3 � I � 12 A

or I3 � I1 � I2 � 8 A � 4 A � 12 A

EXAMPLE 6.20 Determine the resistance R1 to effect the division of
current in Fig. 6.38.

Solution: Applying the current divider rule,

I1 � �
R1

R
�
2 I

R2
�

(2 �)(12 A)
��
2 � � 4 �

(4 �)(12 A)
��
2 � � 4 �

R1

2 �

4 �

I3

R2

I1

I2

I  =  12 A

FIG. 6.37

Example 6.19.

R1

R2

7 �

I = 27 mA

I1 = 21 mA

FIG. 6.38

Example 6.20.
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and (R1 � R2)I1 � R2 I
R1I1 � R2 I1 � R2 I

R1I1 � R2 I � R2 I1

R1 � �
R2(I

I
�

1

I1)�

Substituting values:

R1 �

� 7 ���
2
6
1
�� � � 2 �

An alternative approach is

I2 � I � I1 (Kirchhoff’s current law)
� 27 mA � 21 mA � 6 mA

V2 � I2R2 � (6 mA)(7 �) � 42 mV

V1 � I1R1 � V2 � 42 mV

and R1 � � � 2 �

From the examples just described, note the following:

Current seeks the path of least resistance.

That is,

1. More current passes through the smaller of two parallel resistors.
2. The current entering any number of parallel resistors divides into

these resistors as the inverse ratio of their ohmic values. This rela-
tionship is depicted in Fig. 6.39.

42 mV
�
21 mA

V1�
I1

42 �
�

21

7 �(27 mA � 21 mA)
���

21 mA

P

I1

4 � 4 �

I

I1

I

2I1

1 � 2 �

I

I1

I

3I1

2 � 6 �

I

I1

I

6I1

1 � 3 �

I

2I1

I

6 �

I1

I1  =
I
9

I1  =
I
4

I1  =
I
3

I1  =
I
2

FIG. 6.39

Current division through parallel branches.

6.7 VOLTAGE SOURCES IN PARALLEL

Voltage sources are placed in parallel as shown in Fig. 6.40 only if they
have the same voltage rating. The primary reason for placing two or
more batteries in parallel of the same terminal voltage would be to

eng
Sticky Note
leave
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increase the current rating (and, therefore, the power rating) of the
source. As shown in Fig. 6.40, the current rating of the combination is
determined by Is � I1 � I2 at the same terminal voltage. The resulting
power rating is twice that available with one supply.

If two batteries of different terminal voltages were placed in parallel,
both would be left ineffective or damaged because the terminal voltage
of the larger battery would try to drop rapidly to that of the lower
supply. Consider two lead-acid car batteries of different terminal
voltage placed in parallel, as shown in Fig. 6.41.

The relatively small internal resistances of the batteries are the only
current-limiting elements of the resulting series circuit. The current is

I � � � � 120 A

which far exceeds the continuous drain rating of the larger supply,
resulting in a rapid discharge of E1 and a destructive impact on the
smaller supply.

6.8 OPEN AND SHORT CIRCUITS

Open circuits and short circuits can often cause more confusion and dif-
ficulty in the analysis of a system than standard series or parallel con-
figurations. This will become more obvious in the chapters to follow
when we apply some of the methods and theorems.

An open circuit is simply two isolated terminals not connected by
an element of any kind, as shown in Fig. 6.42(a). Since a path for con-
duction does not exist, the current associated with an open circuit must
always be zero. The voltage across the open circuit, however, can be
any value, as determined by the system it is connected to. In summary,
therefore,

an open circuit can have a potential difference (voltage) across its
terminals, but the current is always zero amperes.

6 V
�
0.05 �

12 V � 6 V
��
0.03 � � 0.02 �

E1 � E2
��
Rint1 � Rint2

I1

12 VE1 E2 E12 V 12 V

I2
Is Is  =  I1  +  I2

FIG. 6.40

Parallel voltage sources.

E1 E2

Rint1
Rint2

I

0.02 �0.03 �

6 V12 V

FIG. 6.41

Parallel batteries of different terminal 
voltages.

V

I = 0 A

+

–
V = 0 V

Short circuit

+

–

Open circuit

I

(a) (b)

FIG. 6.42

Two special network configurations.–

+

I  =  0  A
a

b

 –

+
E Vopen circuit  =  E volts

FIG. 6.43

Demonstrating the characteristics of an 
open circuit.

In Fig. 6.43, an open circuit exists between terminals a and b.As shown
in the figure, the voltage across the open-circuit terminals is the supply
voltage, but the current is zero due to the absence of a complete circuit.
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A short circuit is a very low resistance, direct connection between
two terminals of a network, as shown in Fig. 6.42(b). The current
through the short circuit can be any value, as determined by the system
it is connected to, but the voltage across the short circuit will always be
zero volts because the resistance of the short circuit is assumed to be
essentially zero ohms and V � IR � I(0 �) � 0 V.

In summary, therefore,

a short circuit can carry a current of a level determined by the
external circuit, but the potential difference (voltage) across its
terminals is always zero volts.

In Fig. 6.44(a), the current through the 2-� resistor is 5 A. If a short
circuit should develop across the 2-� resistor, the total resistance of the
parallel combination of the 2-� resistor and the short (of essentially zero

ohms) will be 2 � �� 0 � � � 0 �, and the current will rise to

very high levels, as determined by Ohm’s law:

I � � ∞ A
10 V
�
0 �

E
�
R

(2 �)(0 �)
��
2 � � 0 �

P

I  =  5 A

–

+
E 2 �R10 V

10-A fuse

–

+
E R10 V

RT
IR  =  0 A

I

Vshort circuit  =  0 V

–

“Shorted out” Short circuit

(a) (b)

+

FIG. 6.44

Demonstrating the effect of a short circuit on current levels.

R1

2 kΩ

R2

4 kΩ+

–

20 VE

a

b

+

–

Vab

I

FIG. 6.45

Example 6.21.

The effect of the 2-� resistor has effectively been “shorted out” by
the low-resistance connection. The maximum current is now limited
only by the circuit breaker or fuse in series with the source.

For the layperson, the terminology short circuit or open circuit is
usually associated with dire situations such as power loss, smoke, or
fire. However, in network analysis both can play an integral role in
determining specific parameters about a system. Most often, however, if
a short-circuit condition is to be established, it is accomplished with a
jumper—a lead of negligible resistance to be connected between the
points of interest. Establishing an open circuit simply requires making
sure that the terminals of interest are isolated from each other.

EXAMPLE 6.21 Determine the voltage Vab for the network of Fig.
6.45.

Solution: The open circuit requires that I be zero amperes. The volt-
age drop across both resistors is therefore zero volts since V � IR �
(0)R � 0 V. Applying Kirchhoff’s voltage law around the closed loop,

Vab � E � 20 V
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EXAMPLE 6.22 Determine the voltages Vab and Vcd for the network
of Fig. 6.46.

Solution: The current through the system is zero amperes due to the
open circuit, resulting in a 0-V drop across each resistor. Both resistors
can therefore be replaced by short circuits, as shown in Fig. 6.47. The
voltage Vab is then directly across the 10-V battery, and

Vab � E1 � 10 V

The voltage Vcd requires an application of Kirchhoff’s voltage law:

�E1 � E2 � Vcd � 0

or Vcd � E1 � E2 � 10 V � 30 V � �20 V

The negative sign in the solution simply indicates that the actual volt-
age Vcd has the opposite polarity of that appearing in Fig. 6.46.

EXAMPLE 6.23 Determine the unknown voltage and current for each
network of Fig. 6.48.

P

R1

10 Ω

R2

50 Ω

+

–

10 V

c

d

+

–

VcdE1

a

b

E2
+ –

+

–

Vab

30 V

FIG. 6.46

Example 6.22.

+

–

10 V

c

d

+

–

VcdE1

a

b

E2+ –

+

–

Vab

30 V

FIG. 6.47

Circuit of Fig. 6.46 redrawn.

(b)

22 V

R1

1.2 k�

E

I

+  V  –R2

8.2 k�

(a)

R1 6 �

IT = 12 mA

+

V

–

I

R2 12 �

FIG. 6.48

Example 6.23.

(b)

22 V

R1

E

I = 0 A

+  22 V  –R2

(a)

R1 6 �

I = 0 A

R2 12 �

I = 0 A 12 mA
+

V = 0 V

–

FIG. 6.49

Solutions to Example 6.23.

Solution: For the network of Fig. 6.48(a), the current IT will take the
path of least resistance, and, since the short-circuit condition at the end
of the network is the least-resistance path, all the current will pass
through the short circuit. This conclusion can be verified using Eq.
(6.9). The voltage across the network is the same as that across the
short circuit and will be zero volts, as shown in Fig. 6.49(a).

For the network of Fig. 6.48(b), the open-circuit condition requires
that the current be zero amperes. The voltage drops across the resistors
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must therefore be zero volts, as determined by Ohm’s law [VR � IR �
(0)R � 0 V], with the resistors simply acting as a connection from the
supply to the open circuit. The result is that the open-circuit voltage
will be E � 22 V, as shown in Fig. 6.49(b).

EXAMPLE 6.24 Calculate the current I and the voltage V for the net-
work of Fig. 6.50.

Solution: The 10-k� resistor has been effectively shorted out by the
jumper, resulting in the equivalent network of Fig. 6.51. Using Ohm’s
law,

I � � � 3.6 mA

and V � E � 18 V

EXAMPLE 6.25 Determine V and I for the network of Fig. 6.52 if the
resistor R2 is shorted out.

Solution: The redrawn network appears in Fig. 6.53. The current
through the 3-� resistor is zero due to the open circuit, causing all the
current I to pass through the jumper. Since V3Q � IR � (0)R � 0 V, the
voltage V is directly across the short, and

V � 0 V

with I � � � 3 A

6.9 VOLTMETERS: LOADING EFFECT

In Chapters 2 and 5, it was noted that voltmeters are always placed
across an element to measure the potential difference. We now realize
that this connection is synonymous with placing the voltmeter in paral-
lel with the element. The insertion of a meter in parallel with a resistor
results in a combination of parallel resistors as shown in Fig. 6.54.
Since the resistance of two parallel branches is always less than the
smaller parallel resistance, the resistance of the voltmeter should be as
large as possible (ideally infinite). In Fig. 6.54, a DMM with an inter-
nal resistance of 11 M� is measuring the voltage across a 10-k� resis-
tor. The total resistance of the combination is

RT � 10 k� �� 11 M� � � 9.99 k�

and we find that the network is essentially undisturbed. However, if we
use a VOM with an internal resistance of 50 k� on the 2.5-V scale, the
parallel resistance is

RT � 10 k� �� 50 k� � � 8.33 k�

and the behavior of the network will be altered somewhat since the 
10-k� resistor will now appear to be 8.33 k� to the rest of the network.

The loading of a network by the insertion of meters is not to be taken
lightly, especially in research efforts where accuracy is a primary con-
sideration. It is good practice always to check the meter resistance level

(104 �)(50 � 103 �)
���
104 � � (50 � 103 �)

(104 �)(11 � 106 �)
���
104 � � (11 � 106 �)

6 V
�
2 �

E
�
R1

18 V
�
5 k�

E
�
R1

P

 –

 +

R1

+  V  –

E 18 V

5 k�

I

FIG. 6.51

Network of Fig. 6.50 redrawn.

R1

2 Ω

R3

3 Ω
+

–

6 VE

+

–

V

I

R2 10 �

FIG. 6.52

Example 6.25.

 –

 +

E 6 V

R1

2 �

R3

3 �

I –

+

V

FIG. 6.53

Network of Fig. 6.52 with R2 replaced by 
a jumper.

FIG. 6.54

Voltmeter loading.

I

+ –

11 M�

DMM

10 k�

 –

 +

R1 R2

+  V  –

E 18 V

5 k� 10 k�

I

FIG. 6.50

Example 6.24.
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