
NA BRANCH-CURRENT ANALYSIS  263

4 �

6 V

I1

E2

–

+

1 �

2 VE1

–

+

2 �R1

I2

I3

bd

a

c

R2

R3

FIG. 8.21

Example 8.9.Defined
by I1 I2

4 �

6 V

–

a

+

21

I1

E2

–

+

–

+1 �

2 VE1

–

+

–

+2 �

I3

Defined
by I2

Fixed
polarity

Fixed
polarity

Defined by I3

FIG. 8.22

Inserting the polarities across the resistive elements as defined by the chosen
branch currents.

Step 3: Kirchhoff’s voltage law is applied around each closed loop (1
and 2) in the clockwise direction:

and

of series elements. Figure 8.20 defines the number of applications of
Kirchhoff’s current law for each configuration of Fig. 8.19.

5. Solve the resulting simultaneous linear equations for assumed
branch currents.

It is assumed that the use of the determinants method to solve for the
currents I1, I2, and I3 is understood and is a part of the student’s mathe-
matical background. If not, a detailed explanation of the procedure is
provided in Appendix C. Calculators and computer software packages
such as Mathcad can find the solutions quickly and accurately.

EXAMPLE 8.9 Apply the branch-current method to the network of
Fig. 8.21.

Solution 1:

Step 1: Since there are three distinct branches (cda, cba, ca), three cur-
rents of arbitrary directions (I1, I2, I3) are chosen, as indicated in Fig.
8.21. The current directions for I1 and I2 were chosen to match the
“pressure” applied by sources E1 and E2, respectively. Since both I1 and
I2 enter node a, I3 is leaving.

Step 2: Polarities for each resistor are drawn to agree with assumed
current directions, as indicated in Fig. 8.22.

loop 1:  V � �E1 � VR1 � VR3 � 0

Rise in potential

Drop in potential

loop 2:  V � �VR3 � VR2 
� E2  � 0

Rise in potential

Drop in potential

loop 1:  V � �2 V �  2 � I1 �  4 � I3 � 0 

loop 2:  V �  4 � I3 �  1 � I2 � 6 V � 0 

Battery
potential

Voltage drop
across 2-�

resistor

Voltage drop
across 4-�

resistor

�

�

�

�
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Step 4: Applying Kirchhoff’s current law at node a (in a two-node net-
work, the law is applied at only one node),

I1 � I2 � I3

Step 5: There are three equations and three unknowns (units removed
for clarity):

2 � 2 I1 � 4I3 � 0 Rewritten: 2 I1 � 0 � 4 I3 � 2
4I3 � 1 I2 � 6 � 0 0 � I2 � 4 I3 � 6

I1 � I2 � I3 I1 � I2 � I3 � 0

Using third-order determinants (Appendix C), we have

Mathcad Solution: Once you understand the procedure for enter-
ing the parameters, you can use Mathcad to solve determinants such as

2        0        4       
6        1        4       

2        0        4       
0        1        4       

0        1                   �1

1        1                   �1

2        2              4
0        6              4

2        0              2
0        1              6
1        1              0

1        0     �1

I1 �

I2 �

I3 �

D �

� �1 A

� 2 A

� 1 A

D

D

A negative sign in front of a
branch current indicates only
that the actual current is
in the direction opposite to
that assumed.

NA

FIG. 8.23

Using Mathcad to verify the numerical calculations of Example 8.9.
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appearing in Solution 1 in a very short time frame. The numerator is
defined by n in the same manner described for earlier exercises. Then
the sequence View-Toolbars-Matrix is applied to obtain the Matrix
toolbar appearing in Fig. 8.23. Selecting the top left option called
Matrix will result in the Insert Matrix dialog box in which 3 � 3 is
selected. The 3 � 3 matrix will appear with a bracket to signal which
parameter should be entered. Enter that parameter, and then use the left
click of the mouse to select the next parameter you want to enter. When
you have finished, move on to define the denominator d in the same
manner. Then define the current of interest, select Determinant from
the Matrix toolbar, and insert the numerator variable n. Follow with a
division sign, and enter the Determinant of the denominator as shown
in Fig. 8.23. Retype I1 and select the equal sign; the correct result of
�1 will appear.

Once you have mastered the rather simple and direct process just
described, the availability of Mathcad as a checking tool or solving
mechanism will be deeply appreciated.

Solution 2: Instead of using third-order determinants as in Solution
1, we could reduce the three equations to two by substituting the third
equation in the first and second equations:

or �6 I1 � 4 I2 � �2
�4 I1 � 5 I2 � �6

Multiplying through by �1 in the top equation yields

6 I1 � 4 I2 � �2
4 I1 � 5 I2 � �6

and using determinants,

�2 4�
�6 5� 10 � 24 �14

I1 � ––––––– � –––––––– � ––––  � �1A
�6 4� 30 � 16 14
�4 5�

Using the TI-86 calculator:

CALC. 8.1

Note the det (determinant) obtained from a Math listing under a
MATRX menu and the fact that each determinant must be determined
individually. The first set of brackets within the overall determinant
brackets of the first determinant defines the first row of the determinant,
while the second set of brackets within the same determinant defines
the second row. A comma separates the entries for each row. Obviously,
the time to learn how to enter the parameters is minimal when you con-
sider the savings in time and the accuracy obtained.

2 � 2I1 � 4  I1 � I2  � 0 2 � 2I1 � 4I1 � 4I2  � 0

4  I1 � I2  � I2 � 6 � 0 4I1 � 4I2 � I2 � 6 � 0  

I3

I3

NA

det[[2,4][6,5]]/det[[6,4][4,5]] ENTER �1
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�6 2 �
�4 6 � 36 � 8 28

I2 � ––––––– � ––––––– � –– � 2 A
14 14 14

I3 � I1 � I2 � �1 � 2 � 1 A

It is now important that the impact of the results obtained be under-
stood. The currents I1, I2, and I3 are the actual currents in the branches
in which they were defined. A negative sign in the solution simply
reveals that the actual current has the opposite direction than initially
defined—the magnitude is correct. Once the actual current directions
and their magnitudes are inserted in the original network, the various
voltages and power levels can be determined. For this example, the
actual current directions and their magnitudes have been entered on the
original network in Fig. 8.24. Note that the current through the series
elements R1 and E1 is 1 A; the current through R3, 1 A; and the current
through the series elements R2 and E2, 2 A. Due to the minus sign in the
solution, the direction of I1 is opposite to that shown in Fig. 8.21. The
voltage across any resistor can now be found using Ohm’s law, and the
power delivered by either source or to any one of the three resistors can
be found using the appropriate power equation.

NA

Applying Kirchhoff’s voltage law around the loop indicated in Fig.
8.24,

V � �(4 �)I3 � (1 �)I2 � 6 V � 0

or (4 �)I3 � (1 �)I2 � 6 V

and (4 �)(1 A) � (1 �)(2 A) � 6 V
4 V � 2 V � 6 V

6 V � 6 V (checks)

EXAMPLE 8.10 Apply branch-current analysis to the network of Fig.
8.25.

Solution: Again, the current directions were chosen to match the
“pressure” of each battery. The polarities are then added and Kirch-
hoff’s voltage law is applied around each closed loop in the clockwise
direction. The result is as follows:

loop 1: �15 V � (4 �)I1 � (10 �)I3 � 20 V � 0

loop 2: �20 V � (10 �)I3 � (5 �)I2 � 40 V � 0
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I2  =  2 A

I3  =  1 A

FIG. 8.24

Reviewing the results of the analysis of the network of Fig. 8.21.
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Applying Kirchhoff’s current law at node a,

I1 � I3 � I2

Substituting the third equation into the other two yields (with units
removed for clarity)

15 � 4 I1 � 10 I3 � 20 � 0 � Substituting for I2 (since it occurs

20 � 10 I3 � 5(I1 � I3) � 40 � 0 only once in the two equations)

or �4 I1 � 10 I3 � 5
�5 I1 � 15 I3 � �60

Multiplying the lower equation by �1, we have

�4 I1 � 10 I3 � 5
5 I1 � 15 I3 � 60

� 5 10�
� 60 15� 75 � 600 �525

I1 � –––––––– � ––––––––– � ––––– � 4.773 A
��4 10� �60 � 50 �110
� 5 15�

��4 5�
� 5 60� �240 � 25 �265

I3 � –––––––– � –––––––—–– � ––—– � 2.409 A
�110 �110 �110

I2 � I1 � I3 � 4.773 � 2.409 � 7.182 A

revealing that the assumed directions were the actual directions, with I2

equal to the sum of I1 and I3.

8.7 MESH ANALYSIS (GENERAL APPROACH)

The second method of analysis to be described is called mesh analysis.
The term mesh is derived from the similarities in appearance between the
closed loops of a network and a wire mesh fence. Although this
approach is on a more sophisticated plane than the branch-current
method, it incorporates many of the ideas just developed. Of the two
methods, mesh analysis is the one more frequently applied today.
Branch-current analysis is introduced as a stepping stone to mesh
analysis because branch currents are initially more “real” to the student
than the mesh (loop) currents employed in mesh analysis. Essentially,

NA
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Example 8.10.
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the mesh-analysis approach simply eliminates the need to substitute the
results of Kirchhoff’s current law into the equations derived from
Kirchhoff’s voltage law. It is now accomplished in the initial writing of
the equations. The systematic approach outlined below should be fol-
lowed when applying this method.

1. Assign a distinct current in the clockwise direction to each
independent, closed loop of the network. It is not absolutely
necessary to choose the clockwise direction for each loop current.
In fact, any direction can be chosen for each loop current with no
loss in accuracy, as long as the remaining steps are followed
properly. However, by choosing the clockwise direction as a
standard, we can develop a shorthand method (Section 8.8) for
writing the required equations that will save time and possibly
prevent some common errors.

This first step is accomplished most effectively by placing a loop
current within each “window” of the network, as demonstrated in the
previous section, to ensure that they are all independent. A variety of
other loop currents can be assigned. In each case, however, be sure that
the information carried by any one loop equation is not included in a
combination of the other network equations. This is the crux of the ter-
minology: independent. No matter how you choose your loop currents,
the number of loop currents required is always equal to the number of
windows of a planar (no-crossovers) network. On occasion a network
may appear to be nonplanar. However, a redrawing of the network may
reveal that it is, in fact, planar. Such may be the case in one or two
problems at the end of the chapter.

Before continuing to the next step, let us ensure that the concept of
a loop current is clear. For the network of Fig. 8.26, the loop current I1

is the branch current of the branch containing the 2-� resistor and 2-V
battery. The current through the 4-� resistor is not I1, however, since
there is also a loop current I2 through it. Since they have opposite direc-
tions, I4� equals the difference between the two, I1 � I2 or I2 � I1,
depending on which you choose to be the defining direction. In other
words, a loop current is a branch current only when it is the only loop
current assigned to that branch.

2. Indicate the polarities within each loop for each resistor as
determined by the assumed direction of loop current for that loop.
Note the requirement that the polarities be placed within each
loop. This requires, as shown in Fig. 8.26, that the 4-� resistor
have two sets of polarities across it.

3. Apply Kirchhoff’s voltage law around each closed loop in the
clockwise direction. Again, the clockwise direction was chosen to
establish uniformity and prepare us for the method to be
introduced in the next section.
a. If a resistor has two or more assumed currents through it,

the total current through the resistor is the assumed current
of the loop in which Kirchhoff’s voltage law is being applied,
plus the assumed currents of the other loops passing through
in the same direction, minus the assumed currents through in
the opposite direction.

b. The polarity of a voltage source is unaffected by the direction of
the assigned loop currents.

4. Solve the resulting simultaneous linear equations for the assumed
loop currents.

NA

FIG. 8.26

Defining the mesh currents for a “two-
window” network.
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EXAMPLE 8.11 Consider the same basic network as in Example 8.9
of the preceding section, now appearing in Fig. 8.26.

Solution:

Step 1: Two loop currents (I1 and I2) are assigned in the clockwise
direction in the windows of the network. A third loop (I3) could have
been included around the entire network, but the information carried by
this loop is already included in the other two.

Step 2: Polarities are drawn within each window to agree with assumed
current directions. Note that for this case, the polarities across the 4-�
resistor are the opposite for each loop current.

Step 3: Kirchhoff’s voltage law is applied around each loop in the
clockwise direction. Keep in mind as this step is performed that the law
is concerned only with the magnitude and polarity of the voltages
around the closed loop and not with whether a voltage rise or drop is
due to a battery or a resistive element. The voltage across each resistor
is determined by V � IR, and for a resistor with more than one current
through it, the current is the loop current of the loop being examined
plus or minus the other loop currents as determined by their directions.
If clockwise applications of Kirchhoff’s voltage law are always chosen,
the other loop currents will always be subtracted from the loop current
of the loop being analyzed.

loop 1: �E1 � V1 � V3 � 0 (clockwise starting at point a)

loop 2: �V3 � V2 � E2 � 0 (clockwise starting at point b)

�(4 �)(I2 � I1) � (1 �)I2 � 6 V � 0

Step 4: The equations are then rewritten as follows (without units for
clarity):

loop 1: �2 � 2I1 � 4I1 � 4I2 � 0
loop 2: �4I2 � 4I1 � 1I2 � 6 � 0

and loop 1: �2 � 6I1 � 4I2 � 0
loop 2: �5I2 � 4I1 � 6 � 0

or loop 1: �6I1 � 4I2 � �2
loop 2: �4I1 � 5I2 � �6

Applying determinants will result in

I1 � �1 A and I2 � �2 A

The minus signs indicate that the currents have a direction opposite to
that indicated by the assumed loop current.

The actual current through the 2-V source and 2-� resistor is there-
fore 1 A in the other direction, and the current through the 6-V source
and 1-� resistor is 2 A in the opposite direction indicated on the circuit.
The current through the 4-� resistor is determined by the following
equation from the original network:

�2 V �  2 �  I1 �  4 �   I1 � I2   � 0 

Total current
through

4-� resistor

Voltage drop across
4-� resistor

Subtracted since I
2
 is

opposite in direction to I
1
.

NA
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loop 1: I4� � I1 � I2 � �1 A � (�2 A) � �1 A � 2 A
� 1 A (in the direction of I1)

The outer loop (I3) and one inner loop (either I1 or I2) would also
have produced the correct results. This approach, however, will often
lead to errors since the loop equations may be more difficult to write.
The best method of picking these loop currents is to use the window
approach.

EXAMPLE 8.12 Find the current through each branch of the network
of Fig. 8.27.

Solution:

Steps 1 and 2 are as indicated in the circuit. Note that the polarities of
the 6-� resistor are different for each loop current.

Step 3: Kirchhoff’s voltage law is applied around each closed loop in
the clockwise direction:

loop 1: �E1 � V1 � V2 � E2 � 0 (clockwise starting at point a)

�5 V � (1 �)I1 � (6 �)(I1 � I2) � 10 V � 0

I2 flows through the 6-Q resistor
in the direction opposite to I1.

loop 2: E2 � V2 � V3 � 0 (clockwise starting at point b)

�10 V � (6 �)(I2 � I1) � (2 �)I2 � 0

The equations are rewritten as

5 � I1 � 6I1 � 6I2 � 10 � 0�� 7I1 � 6I2 � 5
10 � 6I2 � 6I1 � 2I2 � 0 � 6I1 � 8I2 � �10

Step 4: � 5 6 �
��10 �8� �40 � 60 20

I1 � –––––––––– � ––––––––– � ––– � 1 A
� �7 6� 56 � 36 20
� 6 �8�

��7 5�
� 6 �10� 70 � 30 40

I2 � –––––––––– � ––––––– � –– � 2 A
20 20 20

Since I1 and I2 are positive and flow in opposite directions through
the 6-� resistor and 10-V source, the total current in this branch is
equal to the difference of the two currents in the direction of the
larger:

I2 > I1 (2 A > 1 A)

Therefore,

IR2
� I2 � I1 � 2 A � 1 A � 1 A in the direction of I2

It is sometimes impractical to draw all the branches of a circuit at
right angles to one another. The next example demonstrates how a por-
tion of a network may appear due to various constraints. The method of
analysis does not change with this change in configuration.

NA

R1 R2 6 �
+

–
1 �

5 VE1 –

+
10 VE2 –

+

21

+

–

a

2 �

I2

+

–

–

+

b
I1

R3

FIG. 8.27

Example 8.12.
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�6 �10�
�4 �1� �6 � 40 34

I2 � ––––––– � –––––––– � –––– � �0.773 A
�44 �44 �44

The current in the 4-� resistor and 4-V source for loop 1 is

I1 � I2 � �2.182 A � (�0.773 A)
� �2.182 A � 0.773 A
� �1.409 A

revealing that it is 1.409 A in a direction opposite (due to the minus
sign) to I1 in loop 1.

Supermesh Currents

On occasion there will be current sources in the network to which mesh
analysis is to be applied. In such cases one can convert the current
source to a voltage source (if a parallel resistor is present) and proceed
as before or utilize a supermesh current and proceed as follows.

Start as before and assign a mesh current to each independent loop,
including the current sources, as if they were resistors or voltage
sources. Then mentally (redraw the network if necessary) remove the
current sources (replace with open-circuit equivalents), and apply

NA

a

R1 = 2 �

2 �
+

–

E2 4 V

R3 = 6 �
–

+

E1 = 6 V
+

– +
–

b
I1 I2

E3 = 3 V
1 2

R2 4 �

+

–

–

+

FIG. 8.28

Example 8.13.

det[[�10,�4][�1,�10]]/det[[6,�4][4,�10]] ENTER �2.182

CALC. 8.2

EXAMPLE 8.13 Find the branch currents of the network of Fig. 8.28.

Solution:

Steps 1 and 2 are as indicated in the circuit.

Step 3: Kirchhoff’s voltage law is applied around each closed loop:

loop 1: �E1 �I1R1 � E2 � V2 � 0 (clockwise from point a)

�6 V � (2 �)I1 � 4 V � (4 �)(I1 � I2) � 0

loop 2: �V2 � E2 � V3 � E3 � 0 (clockwise from point b)

�(4 �)(I2 � I1) � 4 V � (6 �)(I2) � 3 V � 0

which are rewritten as

�10 � 4I1 � 2I1 � 4I2 � 0� �6I1 � 4I2 � �10
� 1 � 4I1 � 4I2 � 6I2 � 0 �4I1 � 10I2 � �1

or, by multiplying the top equation by �1, we obtain

6I1 � 4I2 � �10
4I1 � 10I2 � �1

Step 4: ��10 �4�
�  �1 �10� 100 � 4 96I1 � ––––––––––– � ––––––––– � –––– � �2.182 A
� 6 �4� �60 � 16 �44
� 4 �10�

Using the TI-86 calculator:



272  METHODS OF ANALYSIS AND SELECTED TOPICS (dc)

Kirchhoff’s voltage law to all the remaining independent paths of the
network using the mesh currents just defined. Any resulting path,
including two or more mesh currents, is said to be the path of a super-
mesh current. Then relate the chosen mesh currents of the network to
the independent current sources of the network, and solve for the mesh
currents. The next example will clarify the definition of a supermesh
current and the procedure.

EXAMPLE 8.14 Using mesh analysis, determine the currents of the
network of Fig. 8.29.

NA

Solution: First, the mesh currents for the network are defined, as
shown in Fig. 8.30. Then the current source is mentally removed, as
shown in Fig. 8.31, and Kirchhoff’s voltage law is applied to the result-
ing network. The single path now including the effects of two mesh cur-
rents is referred to as the path of a supermesh current.

R1 6 �

E1 20 V

E2 12 V4 AI

R2

4 �

R3

2 �

FIG. 8.29

Example 8.14.

R1 6 �

E1 20 V

E2 12 V4 AI

R2

4 �

R3

2 �

I1 I2

a

FIG. 8.30

Defining the mesh currents for the network of Fig. 8.29.

E1 20 V

E2 12 VI1 I2

+ – + –

+

–

R2

4 �

R3

2 �
R1 6 �

Supermesh
current

FIG. 8.31

Defining the supermesh current.

Applying Kirchhoff’s law:

20 V � I1(6 �) � I1(4 �) � I2(2 �) � 12 V � 0

or 10I1 � 2I2 � 32
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Node a is then used to relate the mesh currents and the current
source using Kirchhoff’s current law:

I1 � I � I2

The result is two equations and two unknowns:

10I1 � 2I2 � 32
I1 � I2 � 4

Applying determinants:

�32 2 �
� 4 �1� (32)(�1) � (2)(4) 40

I1 � –––––––– � ––––––––––––––– � ––– � 3.33 A
�10 2 � (10)(�1) � (2)(1) 12
� 1 �1�

and I2 � I1 � I � 3.33 A � 4 A � �0.67 A

In the above analysis, it might appear that when the current source
was removed, I1 � I2. However, the supermesh approach requires that
we stick with the original definition of each mesh current and not alter
those definitions when current sources are removed.

EXAMPLE 8.15 Using mesh analysis, determine the currents for the
network of Fig. 8.32.

NA

I1 I3I22 � 8 �

6 �

6 A 8 A

FIG. 8.33

Defining the mesh currents for the network of Fig. 8.32.

Supermesh
current

I1 I3I22 � 8 �

6 �
+ –

+

–

–

+

FIG. 8.34

Defining the supermesh current for the
network of Fig. 8.32.

2 � 8 �

6 �

6 A 8 A

FIG. 8.32

Example 8.15.

Solution: The mesh currents are defined in Fig. 8.33. The current
sources are removed, and the single supermesh path is defined in Fig.
8.34.

Applying Kirchhoff’s voltage law around the supermesh path:

�V2� � V6� � V8� � 0
�(I2 � I1)2 � � I2(6 �) � (I2 � I3)8 � � 0
�2I2 � 2I1 � 6I2 � 8I2 � 8I3 � 0

2I1 � 16I2 � 8I3 � 0
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NA

Introducing the relationship between the mesh currents and the cur-
rent sources:

I1 � 6 A

I3 � 8 A

results in the following solutions:

2I1 � 16I2 � 8I3 � 0

2(6 A) � 16I2 � 8(8 A) � 0

and I2 � � 4.75 A

Then I2� � I1 � I2 � 6 A � 4.75 A � 1.25 A

and I8� � I3 � I2 � 8 A � 4.75 A � 3.25 A

Again, note that you must stick with your original definitions of the
various mesh currents when applying Kirchhoff’s voltage law around
the resulting supermesh paths.

8.8 MESH ANALYSIS (FORMAT APPROACH)

Now that the basis for the mesh-analysis approach has been established,
we will now examine a technique for writing the mesh equations more
rapidly and usually with fewer errors. As an aid in introducing the pro-
cedure, the network of Example 8.12 (Fig. 8.27) has been redrawn in
Fig. 8.35 with the assigned loop currents. (Note that each loop current
has a clockwise direction.)

The equations obtained are

�7I1 � 6I2 � 5
6I1 � 8I2 � �10

which can also be written as

7I1 � 6I2 � �5
8I2 � 6I1 � 10

and expanded as

Col. 1 Col. 2 Col. 3

(1 � 6)I1 � 6I2 � (5 � 10)
(2 � 6)I2 � 6I1 � 10

Note in the above equations that column 1 is composed of a loop
current times the sum of the resistors through which that loop current
passes. Column 2 is the product of the resistors common to another
loop current times that other loop current. Note that in each equation,
this column is subtracted from column 1. Column 3 is the algebraic
sum of the voltage sources through which the loop current of interest
passes. A source is assigned a positive sign if the loop current passes
from the negative to the positive terminal, and a negative value is
assigned if the polarities are reversed. The comments above are correct
only for a standard direction of loop current in each window, the one
chosen being the clockwise direction.

The above statements can be extended to develop the following for-
mat approach to mesh analysis:

76 A
�

16

I1 I2

21 2 �R3

+

–

–
R1

+
1 � R2 6 �

+

–

–

+

5 VE1 –

+
10 VE2 –

+

FIG. 8.35

Network of Fig. 8.27 redrawn with assigned
loop currents.
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1. Assign a loop current to each independent, closed loop (as in the
previous section) in a clockwise direction.

2. The number of required equations is equal to the number of
chosen independent, closed loops. Column 1 of each equation is
formed by summing the resistance values of those resistors
through which the loop current of interest passes and multiplying
the result by that loop current.

3. We must now consider the mutual terms, which, as noted in the
examples above, are always subtracted from the first column. A
mutual term is simply any resistive element having an additional
loop current passing through it. It is possible to have more than one
mutual term if the loop current of interest has an element in common
with more than one other loop current. This will be demonstrated in
an example to follow. Each term is the product of the mutual resistor
and the other loop current passing through the same element.

4. The column to the right of the equality sign is the algebraic sum of
the voltage sources through which the loop current of interest
passes. Positive signs are assigned to those sources of voltage
having a polarity such that the loop current passes from the
negative to the positive terminal. A negative sign is assigned to
those potentials for which the reverse is true.

5. Solve the resulting simultaneous equations for the desired loop
currents.

Before considering a few examples, be aware that since the column
to the right of the equals sign is the algebraic sum of the voltage sources
in that loop, the format approach can be applied only to networks in
which all current sources have been converted to their equivalent volt-
age source.

EXAMPLE 8.16 Write the mesh equations for the network of Fig.
8.36, and find the current through the 7-� resistor.

Solution:

Step 1: As indicated in Fig. 8.36, each assigned loop current has a
clockwise direction.

Steps 2 to 4:

I1: (8 � � 6 � � 2 �)I1 � (2 �)I2 � 4 V
I2: (7 � � 2 �)I2 � (2 �)I1 � �9 V

and 16I1 � 2I2 � 4
9I2 � 2I1 � �9

which, for determinants, are

16I1 � 2I2 � 4
�2I1 � 9I2 � �9

� 16 4�
��2 �9� �144 � 8 �136

and I2 � I7� � ––––––––– � ––––––––– � –––––
� 16 �2� 144 � 4 140
��2 9�

� �0.971 A

NA

I1 I2

21

4 V
–+

6 �

–+

–

+
8 � 7 �

+

–
2 �

+

–

–

+

9 V
+–

FIG. 8.36

Example 8.16.
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Solution:

Step 1: Each window is assigned a loop current in the clockwise direc-
tion:

Summing terms yields

2I1 � I2 � 0 � �2
6I2 � I1 � 3I3 � 4
7I3 � 3I2 � 0 � 2

which are rewritten for determinants as

Note that the coefficients of the a and b diagonals are equal. This
symmetry about the c-axis will always be true for equations written
using the format approach. It is a check on whether the equations were
obtained correctly.

We will now consider a network with only one source of voltage to
point out that mesh analysis can be used to advantage in other than multi-
source networks.

   2I1   �     I2    �   0         � �2

       0      �     3I2 �     7I3     � 2

     �I1   �      6I2  �     3I3     � 4

c b a

b

a

1 � � 1 �  I1 �  1 �  I2 � 0 � 2 V � 4 V 

3 � � 4 �  I3 �  3 �  I2 � 0 � 2 V
1 � � 2 � � 3 �  I2 �   1 �  I1 �   3 �  I3 � 4 V    

I1 :
I2 :
I3 :

I
1
 does not pass through an element

mutual with I
3
.

I
3
 does not pass through an element

mutual with I
1
.

NA

I1 I2

21

1 �

+

–

–

+

4 V
–

+

–

+

+

–

–
2 V

+

+

–
1 �

+
2 V

–

–

+
4 �

3 � 3

2 �+ –

I3

FIG. 8.37

Example 8.17.

EXAMPLE 8.17 Write the mesh equations for the network of Fig.
8.37.
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Solution 1:

I1: (8 � � 3 �)I1 � (8 �)I3 � (3 �)I2 � 15 V
I2: (3 � � 5 � � 2 �)I2 � (3 �)I1 � (5 �)I3 � 0
I3: (8 � � 10 � � 5 �)I3 � (8 �)I1 � (5 �)I2 � 0

11I1 � 8I3 � 3I2 � 15
10I2 � 3I1 � 5I3 � 0
23I3 � 8I1 � 5I2 � 0

or 11I1 � 3I2 � 8I3 � 15
�3I1 � 10I2 � 5I3 � 0
�8I1 � 5I2 � 23I3 � 0

� 11 �3 15�
��3 10 0�
��8 �5 0�

and I3 � I10� � ––––––––––––– � 1.220 A
� 11 �3 �8�
��3 10 �5�
��8 �5 23�

Mathcad Solution: For this example, rather than take the time to
develop the determinant form for each variable, we will apply Mathcad
directly to the resulting equations. As shown in Fig. 8.39, a Guess value
for each variable must first be defined. Such guessing helps the com-
puter begin its iteration process as it searches for the solution. By pro-
viding a rough estimate of 1, the computer recognizes that the result
will probably be a number with a magnitude less than 100 rather than
have to worry about solutions that extend into the thousands or tens of
thousands—the search has been narrowed considerably.

Next, as shown, the word Given must be entered to tell the computer
that the defining equations will follow. Finally, each equation must be
carefully entered and set equal to the constant on the right using the
Ctrl� operation.

The results are then obtained with the Find(I1,I2,I3) expression and
an equal sign. As shown, the results are available with an acceptable
degree of accuracy even though entering the equations and performing
the analysis took only a minute or two (with practice).

NA

I1 I2

21 2 �

+

–
3 �

+

–

–

+

–+
+–

+

–
15 V

–+
+–

10 �

–+

3
I3

I10� = I3

8 � 5 �

FIG. 8.38

Example 8.18.

EXAMPLE 8.18 Find the current through the 10-� resistor of the net-
work of Fig. 8.38.
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NA

det[[11,�3,15][�3,10,0][�8,�5,0]]/det[[11,�3,�8][�3,10,�5][�8,�5,23]] ENTER 1.220

CALC. 8.3

Solution 2: Using the TI-86 calculator:

FIG. 8.39

Using Mathcad to verify the numerical calculations of Example 8.18.

This display certainly requires some care in entering the correct
sequence of brackets in the required format, but it is still a rather neat,
compact format.

8.9 NODAL ANALYSIS (GENERAL APPROACH)

Recall from the development of loop analysis that the general network
equations were obtained by applying Kirchhoff’s voltage law around
each closed loop. We will now employ Kirchhoff’s current law to
develop a method referred to as nodal analysis.

A node is defined as a junction of two or more branches. If we now
define one node of any network as a reference (that is, a point of zero
potential or ground), the remaining nodes of the network will all have a
fixed potential relative to this reference. For a network of N nodes,
therefore, there will exist (N �1) nodes with a fixed potential relative to
the assigned reference node. Equations relating these nodal voltages can
be written by applying Kirchhoff’s current law at each of the (N �1)
nodes. To obtain the complete solution of a network, these nodal volt-
ages are then evaluated in the same manner in which loop currents were
found in loop analysis.
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NA

The nodal analysis method is applied as follows:

1. Determine the number of nodes within the network.
2. Pick a reference node, and label each remaining node with a

subscripted value of voltage: V1, V2, and so on.
3. Apply Kirchhoff’s current law at each node except the reference.

Assume that all unknown currents leave the node for each
application of Kirchhoff’s current law. In other words, for each
node, don’t be influenced by the direction that an unknown
current for another node may have had. Each node is to be treated
as a separate entity, independent of the application of Kirchhoff’s
current law to the other nodes.

4. Solve the resulting equations for the nodal voltages.

A few examples will clarify the procedure defined by step 3. It will
initially take some practice writing the equations for Kirchhoff’s cur-
rent law correctly, but in time the advantage of assuming that all the
currents leave a node rather than identifying a specific direction for
each branch will become obvious. (The same type of advantage is asso-
ciated with assuming that all the mesh currents are clockwise when
applying mesh analysis.)

EXAMPLE 8.19 Apply nodal analysis to the network of Fig. 8.40.

Solution:

Steps 1 and 2: The network has two nodes, as shown in Fig. 8.41. The
lower node is defined as the reference node at ground potential (zero
volts), and the other node as V1, the voltage from node 1 to ground.

Step 3: I1 and I2 are defined as leaving the node in Fig. 8.42, and Kirch-
hoff’s current law is applied as follows:

I � I1 � I2

The current I2 is related to the nodal voltage V1 by Ohm’s law:

I2 � �

The current I1 is also determined by Ohm’s law as follows:

I1 �

with VR1
� V1 � E

Substituting into the Kirchhoff’s current law equation:

I � �

and rearranging, we have

I � � � � V1� � � �

or V1� � � � � I
E
�
R1

1
�
R2

1
�
R1

E
�
R1

1
�
R2

1
�
R1

V1
�
R2

E
�
R1

V1
�
R1

V1
�
R2

V1 � E
�

R1

VR1�
R1

V1
�
R2

VR2�
R2

I 1 A12 �R2

R1 6 �

E 24 V
–

+

FIG. 8.40

Example 8.19.

I 1 A12 �R2

R1 6 �

E 24 V

V1

(0 V)

FIG. 8.41

Network of Fig. 8.40 with assigned nodes.

+

–
I 1 A12 �R2

R1 6 �

E 24 V

V1

(0 V)

I1

–

+

I2

FIG. 8.42

Applying Kirchhoff’s current law to the 
node V1.
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Substituting numerical values, we obtain

V1� � � � � 1 A � 4 A � 1 A
24 V
�
6 �

1
�
12 �

1
�
6 �

NA

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

FIG. 8.43

Example 8.20.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+

–

V2V1

FIG. 8.44

Defining the nodes for the network of Fig. 8.43.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+ –

+

–

V2V1

I1

I2

FIG. 8.45

Applying Kirchhoff’s current law to node V1.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+–

+

–

V2V1

I3

I2

FIG. 8.46

Applying Kirchhoff’s current law to node V2.

V1� � � 5 A

V1 � 20 V

The currents I1 and I2 can then be determined using the preceding equa-
tions:

I1 � � �

� �0.667 A

The minus sign indicates simply that the current I1 has a direction oppo-
site to that appearing in Fig. 8.42.

I2 � � � 1.667 A

EXAMPLE 8.20 Apply nodal analysis to the network of Fig. 8.43.

Solution 1:

Steps 1 and 2: The network has three nodes, as defined in Fig. 8.44,
with the bottom node again defined as the reference node (at ground
potential, or zero volts), and the other nodes as V1 and V2.

Step 3: For node V1 the currents are defined as shown in Fig. 8.45, and
Kirchhoff’s current law is applied:

0 � I1 � I2 � I

with I1 �

and I2 � �

so that � � I � 0

or � � � � I � 0

and V1� � � � V2� � � �I �

Substituting values:

V1� � � � V2� � � �2 A � � 6 A

For node V2 the currents are defined as shown in Fig. 8.46, and
Kirchhoff’s current law is applied:

I � I2 � I3

with I � �
V2
�
R3

V2 � V1
�

R2

64 V
�
8 �

1
�
4 �

1
�
4 �

1
�
8 �

E
�
R1

1
�
R2

1
�
R2

1
�
R1

V2
�
R2

V1
�
R2

E
�
R1

V1
�
R1

V1 � V2
�

R2

V1 � E
�

R1

V1 � V2
�

R2

VR2�
R2

V1 � E
�

R1

20 V
�
12 �

V1
�
R2

�4 V
�

6 �

20 V � 24 V
��

6 �

V1 � E
�

R1

1
�
4 �
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or I � � �

and V2� � � � V1� � � I

Substituting values:

V2� � � � V1� � � 2 A

Step 4: The result is two equations and two unknowns:

V1� � � � V2� � � 6 A

�V1� � � V2� � � � 2 A

which become

0.375V1 � 0.25V2 � 6
�0.25V1 � 0.35V2 � 2

Using determinants,

V1 � 37.818 V

V2 � 32.727 V

Since E is greater than V1, the current I1 flows from ground to V1 and is
equal to

IR1
� � � 3.273 A

The positive value for V2 results in a current IR3
from node V2 to ground

equal to

IR3
� � � � 3.273 A

Since V1 is greater than V2, the current IR2
flows from V1 to V2 and is

equal to

IR2
� � � 1.273 A

Mathcad Solution: For this example, we will use Mathcad to work
directly with the Kirchhoff’s current law equations rather than taking
the mathematical process down the line to more familiar forms. Simply
define everything correctly, provide the Guess values, and insert Given
where required. The process should be quite straightforward.

Note in Fig. 8.47 that the first equation comes from the fact that 
I1 � I2 � I � 0 while the second equation comes from I2 � I3 � I. Pay
particular attention to the fact that the first equation is defined by 
Fig. 8.45 and the second by Fig. 8.46 because the direction of I2 is dif-
ferent for each.

The results of V1 � 37.82 V and V2 � 32.73 V confirm the theoret-
ical solution.

37.818 V � 32.727 V
���

4 �

V1 � V2
�

R2

32.727 V
�

10 �

V2
�
R3

VR3�
R3

64 V � 37.818 V
��

8 �

E � V1
�

R1

1
�
10 �

1
�
4 �

1
�
4 �

1
�
4 �

1
�
4 �

1
�
8 �

1
�
4 �

1
�
10 �

1
�
4 �

1
�
R2

1
�
R3

1
�
R2

V2
�
R3

V1
�
R2

V2
�
R2

NA
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EXAMPLE 8.21 Determine the nodal voltages for the network of Fig.
8.48.

NA

4 A 2 �R1 R2 6 �

R3

2 A

12 �

FIG. 8.48

Example 8.21.

4 A
R1 2 A

2 �

I3

Reference

V1 V2

R2 6 �

R3  =  12 �

I1

FIG. 8.49

Defining the nodes and applying Kirchhoff’s current law to the node V1.

Solution:

Steps 1 and 2: As indicated in Fig. 8.49.

FIG. 8.47

Using Mathcad to verify the mathematical calculations of Example 8.20.
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NA

4 A R1 2 A2 �

I3

Reference

V1 V2

R2
6 �

R3  =  12 �

I2

FIG. 8.50

Applying Kirchhoff’s current law to the node V2.

Step 3: Included in Fig. 8.49 for the node V1. Applying Kirchhoff’s
current law:

4 A � I1 � I3

and 4 A � � � �

Expanding and rearranging:

V1� � � � V2� � � 4 A

For node V2 the currents are defined as in Fig. 8.50.

1
�
12 �

1
�
12 �

1
�
2 �

V1 � V2
�

12 �

V1
�
2 �

V1 � V2
�

R3

V1
�
R1

Applying Kirchhoff’s current law:

0 � I3 � I2 � 2 A

and � � 2 A � 0 � � 2 A � 0

Expanding and rearranging:

V2� � � � V1� � � �2 A

resulting in two equations and two unknowns (numbered for later refer-
ence):

V1� � � � V2� � � �4 A

V2� � � � V1� � � �2 A

(8.3)

producing

V1 � V2 � �4 7V1 � V2 � 48

� V1 � V2 � �2 �1V1 � 3V2 � �24

��48 �1�
��24 �3�

and V1 � –––––––––– � � �6 V
��7 �1�
��1 03�

��7 48�
��1 �24�

V2 � –––––––––– � � �6 V
20

�120
�

20

120
�
20

3
�
12

1
�
12

1
�
12

7
�
12

1
�
12 �

1
�
6 �

1
�
12 �

1
�
12 �

1
�
12 �

1
�
2 �

1
�
12 �

1
�
6 �

1
�
12 �

V2
�
6 �

V2 � V1
�

12 �

V2
�
R2

V2 � V1
�

R3
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Since V1 is greater than V2, the current through R3 passes from V1 to V2.
Its value is

IR3
� � � � 1 A

The fact that V1 is positive results in a current IR1
from V1 to ground

equal to

IR1
� � � � 3 A

Finally, since V2 is negative, the current IR2
flows from ground to V2 and

is equal to

IR2
� � � � 1 A

Supernode

On occasion there will be independent voltage sources in the network to
which nodal analysis is to be applied. In such cases we can convert the
voltage source to a current source (if a series resistor is present) and pro-
ceed as before, or we can introduce the concept of a supernode and pro-
ceed as follows.

Start as before and assign a nodal voltage to each independent node of
the network, including each independent voltage source as if it were a
resistor or current source. Then mentally replace the independent voltage
sources with short-circuit equivalents, and apply Kirchhoff’s current law
to the defined nodes of the network. Any node including the effect of ele-
ments tied only to other nodes is referred to as a supernode (since it has
an additional number of terms). Finally, relate the defined nodes to the
independent voltage sources of the network, and solve for the nodal volt-
ages. The next example will clarify the definition of supernode.

EXAMPLE 8.22 Determine the nodal voltages V1 and V2 of Fig. 8.51
using the concept of a supernode.

6 V
�
6 �

V2
�
R2

VR2�
R2

6 V
�
2 �

V1
�
R1

VR1�
R1

12 V
�
12 �

6 V � (�6 V)
��

12 �

V1 � V2
�

R3

NA

R1 4 �

R3

10 �
E

12 V

R2 2 �6 A 4 A

V2V1

FIG. 8.51

Example 8.22.

Solution: Replacing the independent voltage source of 12 V with a
short-circuit equivalent will result in the network of Fig. 8.52. Even
though the mental application of a short-circuit equivalent is discussed
above, it would be wise in the early stage of development to redraw the
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NA

R1 4 �

R3

10 �

R2 2 �6 A 4 A

V2V1

I1 I2

I3 I3
Supernode

FIG. 8.52

Defining the supernode for the network of Fig. 8.51.

network as shown in Fig. 8.52. The result is a single supernode for which
Kirchhoff’s current law must be applied. Be sure to leave the other defined
nodes in place and use them to define the currents from that region of the
network. In particular, note that the current I3 will leave the supernode at
V1 and then enter the same supernode at V2. It must therefore appear twice
when applying Kirchhoff’s current law, as shown below:

Σ Ii � Σ Io

6 A � I3 � I1 � I2 � 4 A � I3

or I1 � I2 � 6 A � 4 A � 2 A

Then � � 2 A

and � � 2 A

Relating the defined nodal voltages to the independent voltage source,
we have

V1 � V2 � E � 12 V

which results in two equations and two unknowns:

0.25V1 � 0.5V2 � 2
V1 � 1V2 � 12

Substituting:

V1 � V2 � 12

0.25(V2 � 12) � 0.5V2 � 2

and 0.75V2 � 2 � 3 � �1

so that V2 � � �1.333 V

and V1 � V2 � 12 V � �1.333 V � 12 V � �10.667 V

The current of the network can then be determined as follows:

I1 � � � 2.667 A

I2 � � � 0.667 A

I3 � � � � 1.2 A
12 V
�
10 �

10.667 V � (�1.333 V)
���

10 �

V1 � V2
�

10 �

1.333 V
�

2 �

V2
�
R2

10.667 V
�

4 �

V
�
R1

�1
�
0.75

V2
�
2 �

V1
�
4 �

V2
�
R2

V1
�
R1
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A careful examination of the network at the beginning of the analy-
sis would have revealed that the voltage across the resistor R3 must be
12 V and I3 must be equal to 1.2 A.

8.10 NODAL ANALYSIS (FORMAT APPROACH)

A close examination of Eq. (8.3) appearing in Example 8.21 reveals
that the subscripted voltage at the node in which Kirchhoff’s current
law is applied is multiplied by the sum of the conductances attached to
that node. Note also that the other nodal voltages within the same equa-
tion are multiplied by the negative of the conductance between the two
nodes. The current sources are represented to the right of the equals
sign with a positive sign if they supply current to the node and with a
negative sign if they draw current from the node.

These conclusions can be expanded to include networks with any
number of nodes. This will allow us to write nodal equations rapidly
and in a form that is convenient for the use of determinants. A major
requirement, however, is that all voltage sources must first be converted
to current sources before the procedure is applied. Note the parallelism
between the following four steps of application and those required for
mesh analysis in Section 8.8:

1. Choose a reference node and assign a subscripted voltage label to
the (N � 1) remaining nodes of the network.

2. The number of equations required for a complete solution is equal
to the number of subscripted voltages (N � 1). Column 1 of each
equation is formed by summing the conductances tied to the node of
interest and multiplying the result by that subscripted nodal voltage.

3. We must now consider the mutual terms that, as noted in the
preceding example, are always subtracted from the first column.
It is possible to have more than one mutual term if the nodal
voltage of current interest has an element in common with more
than one other nodal voltage. This will be demonstrated in an
example to follow. Each mutual term is the product of the mutual
conductance and the other nodal voltage tied to that conductance.

4. The column to the right of the equality sign is the algebraic sum of
the current sources tied to the node of interest. A current source is
assigned a positive sign if it supplies current to a node and a
negative sign if it draws current from the node.

5. Solve the resulting simultaneous equations for the desired
voltages.

Let us now consider a few examples.
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Steps 2 to 4:

and V1 � V2 � �2

� V1 � V2 � 3
7

�
12

1
�
3

1
�
3

1
�
2

V2: V2 V1
1

4 �
1

3 �
1

3 �
� � � �3 A

Supplying current
to node 2

Sum of
conductances

connected
to node 2

Mutual
conductance

V1: V1 V2
1

6 �
1

3 �
1

3 �
� � � �2 A

Drawing current
from node 1

Sum of
conductances

connected
to node 1

Mutual
conductance

NA

2 A 6 �R1 R2 4 �

R3

3 A

3 �

I2I1

FIG. 8.53

Example 8.23.

Reference

R1 6 �

R3

3 �

I2 3 A R2 4 �I1 2 A

V1 V2

FIG. 8.54

Defining the nodes for the network of Fig. 8.53.

EXAMPLE 8.23 Write the nodal equations for the network of Fig.
8.53.

Solution:

Step 1: The figure is redrawn with assigned subscripted voltages in Fig.
8.54.
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EXAMPLE 8.24 Find the voltage across the 3-� resistor of Fig. 8.55
by nodal analysis.

NA

2 �

V3�8 V
–

+

6 � 10 �

4 � 3 � 1 V–

+

–

+

FIG. 8.55

Example 8.24.

FIG. 8.56

Defining the nodes for the network of Fig. 8.55.

V3�2 �

V1

4 A

–

+
4 � 3 �

10 �
0.1 A

V2

Reference

6 �

� � � �V1 � � �V2 � �4 A
1

�
6 �

1
�
6 �

1
�
4 �

1
�
2 �









� � � �V2 � � �V1 � �0.1 A

V1 � V2 � 4

� V1 � V2 � �0.1

resulting in

11V1 � 2V2 � �48
�5V1 � 18V2 � �3

and

� 11 48�
��5 �3� �33 � 240 207

V2 � V3� � ––––––––– � –––––––––– � –––– � 1.101 V
� 11 �2� 198 � 10 188
��5 18�

As demonstrated for mesh analysis, nodal analysis can also be a very
useful technique for solving networks with only one source.

3
�
5

1
�
6

1
�
6

11
�
12

1
�
6 �

1
�
6 �

1
�
3 �

1
�
10 �

Solution: Converting sources and choosing nodes (Fig. 8.56), we
have
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EXAMPLE 8.25 Using nodal analysis, determine the potential across
the 4-� resistor in Fig. 8.57.

Solution 1: The reference and four subscripted voltage levels were
chosen as shown in Fig. 8.58. A moment of reflection should reveal that
for any difference in potential between V1 and V3, the current through
and the potential drop across each 5-� resistor will be the same. There-
fore, V4 is simply a midvoltage level between V1 and V3 and is known
if V1 and V3 are available. We will therefore not include it in a nodal
voltage and will redraw the network as shown in Fig. 8.59. Understand,
however, that V4 can be included if desired, although four nodal volt-
ages will result rather than the three to be obtained in the solution of
this problem.

V1: � � � �V1 � � �V2 � � �V3 � 0
1

�
10 �

1
�
2 �

1
�
10 �

1
�
2 �

1
�
2 �

NA

2 �

3 A

2 �

4 �2 �

5 � 5 �

FIG. 8.57

Example 8.25.

2 �

3 A

2 �

4 �2 �

5 � 5 �

V1

V4

V3V2

(0 V)

FIG. 8.58

Defining the nodes for the network of Fig.
8.57.

2 �

3 A

2 �

4 �2 �

V1

10 �

(0 V)

V2 V3

FIG. 8.59

Reducing the number of nodes for the network
of Fig. 8.57 by combining the two 5-�

resistors.

V2: � � �V2 � � �V1 � � �V3 � 3 A
1

�
2 �

1
�
2 �

1
�
2 �

1
�
2 �

V3: � � � �V3 � � �V2 � � �V1 � 0

which are rewritten as

1.1V1 � 0.5V2 � 0.1V3 � 0
V2 � 0.5V1 � 0.5V3 � 3

0.85V3 � 0.5V2 � 0.1V1 � 0

For determinants,

Before continuing, note the symmetry about the major diagonal in
the equation above. Recall a similar result for mesh analysis. Exam-
ples 8.23 and 8.24 also exhibit this property in the resulting equations.
Keep this thought in mind as a check on future applications of nodal
analysis.

��1.1 �0.5 0 �
��0.5 �1 3 �
��0.1 �0.5 0 �

V3 � V4� � ––––––––––––––––––– � 4.645 V
��1.1 �0.5 �0.1 �
��0.5 �1 �0.5 �
��0.1 �0.5 �0.85�

Mathcad Solution: By now the sequence of steps necessary to
solve a series of equations using Mathcad should be quite familiar and
less threatening than the first encounter. For this example, all the param-
eters were entered in the three simultaneous equations, avoiding the

1.1V1 � 0.5V2 � 0.1V3 � 0

�0.1V1 � 0.5V2 � 0.85V3 � 0

�0.5V1 � 1V2 � 0.5V3 � 3

c b a

b

a

1
�
10 �

1
�
2 �

1
�
4 �

1
�
2 �

1
�
10 �

eng
Sticky Note
غير داخل
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need to define each parameter of the network. Simply provide a Guess
at the three nodal voltages, apply the word Given, and enter the three
equations properly as shown in Fig. 8.60. It does take some practice to
ensure that the bracket is moved to the proper location before making
an entry, but this is simply part of the rules set up to maintain control of
the operations to be performed. Finally, request the desired nodal volt-
ages using the correct format. The numerical results will appear, again
confirming our theoretical solutions.

NA

3 � 4 � 1 �

9 �

240 V 6 � 6 � 2 �–

+

FIG. 8.61

Example 8.26.

FIG. 8.60

Using Mathcad to verify the mathematical calculations of Example 8.25.

The next example has only one source applied to a ladder network.

EXAMPLE 8.26 Write the nodal equations and find the voltage across
the 2-� resistor for the network of Fig. 8.61.
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V1: � � � �V1 � � �V2 � 0 � 20 V
1

�
4 �

1
�
4 �

1
�
6 �

1
�
12 �

NA

FIG. 8.62

Converting the voltage source to a current source and defining the nodes for the
network of Fig. 8.61.

12 �

V1

2 �20 A 6 � 6 �

(0 V)

1 �4 �

V2 V3

Solution: The nodal voltages are chosen as shown in Fig. 8.62.

V2: � � � �V2 � � �V1 � � �V3 � 0
1

�
1 �

1
�
4 �

1
�
1 �

1
�
6 �

1
�
4 �

V3: � � �V3 � � �V2 � 0 � 0

and

0.5V1 � 0.25V2 � 0 � 20

�0.25V1 � V2 � 1V3 � 0

0 � 1V2 � 1.5V3 � 0

Note the symmetry present about the major axis. Application of
determinants reveals that

V3 � V2� � 10.667 V

8.11 BRIDGE NETWORKS

This section introduces the bridge network, a configuration that has a
multitude of applications. In the chapters to follow, it will be employed
in both dc and ac meters. In the electronics courses it will be encoun-
tered early in the discussion of rectifying circuits employed in convert-
ing a varying signal to one of a steady nature (such as dc). A number of
other areas of application also require some knowledge of ac networks;
these areas will be discussed later.

The bridge network may appear in one of the three forms as indi-
cated in Fig. 8.63. The network of Fig. 8.63(c) is also called a symmet-
rical lattice network if R2 � R3 and R1 � R4. Figure 8.63(c) is an excel-
lent example of how a planar network can be made to appear nonplanar.
For the purposes of investigation, let us examine the network of Fig.
8.64 using mesh and nodal analysis.

17
�
12

1
�
1 �

1
�
2 �

1
�
1 �
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