
11.3 MEMORY MANAGEMENT DATA STRUCTURES 255

Internally, the kernel uses this block allocation mechanism through calls that operate like
the familiar malloc() and free () routines. User programs written in Limbo don’t directly
allocate memory like UNIX processes do using the brk () system call or the malloc() library
call. Consequently, Inferno does not provide any form of memory allocation system call
for user processes. There are, however, a number of Limbo constructs that do implicitly
allocate memory. The spawn statement implicitly allocates memory when creating a
new process. Similarly, the load statement must allocate space to load a new module
into memory. As with most systems, stack space grows automatically with usage. Finally,
there are two Dis instructions, new and newa, which are used when a program dynamically
creates a new data structure or a new array. Limbo programs do not directly free any
memory they allocate. Instead, Inferno uses a combination of reference counts and mark-
and-sweep garbage collection to identify and free memory no longer used by user processes.

11.2 Memory Layouts

Most of our discussions of memory layouts make a distinction between virtual memory
space and physical memory space. Because Inferno doesn’t use any address translation,
these two spaces are the same, and we refer to it simply as the memory space.

The pool/arena allocation strategy has significant implications for the overall memory
layout. Aside from the kernel image itself, memory is simply sliced up into arenas ac-
cording to the sizes of the requests as they are issued. There are no fixed assignments of
components in the memory space.

As in most systems, processes in Inferno have separate areas of memory for code and
for data. However, unlike most systems, Inferno does not place these areas in particular
locations in the address space. Each of the modules used by a process has its own code
that occupies the memory block where it was loaded. Similarly, each module has a global
data block. All dynamic data items and stack also occupy the blocks that are allocated for
them. Because no address translation is done, a process cannot depend on these various
memory areas being at known locations. Furthermore, because Limbo does not provide
the capability of manipulating arbitrary pointers, a user process doesn’t have any way to
use that information anyway.

The remainder of this chapter presents a detailed examination of the implementation
of Inferno memory management. We begin with the data structures used to represent
memory and move on to the functions that handle block allocation and deallocation.

11.3 Memory Management Data Structures

We turn now to the details of how the general memory management techniques in Inferno
are implemented. There are two main data structures representing memory in Inferno.
The first of these represents pools. There is an array of these, one for each pool. The
second is used to represent both arenas and blocks. Blocks are represented by a pair of
structures that form a header and a tail. Arenas don’t have their own data structure to
describe them. Instead, they are treated much like large blocks that are then subdivided
into smaller blocks.

256 CHAPTER 11 MEMORY MANAGEMENT IN INFERNO

11.3.1 Memory Pools

As explained earlier, blocks of memory are allocated from the main pool, the heap pool,
and the image pool. For allocations made within the kernel, as well as allocations in
some of the built-in modules, the main pool is used. The image pool is used by the code
in libdraw for storing image data. The heap pool is used by the code in libinterp for some
allocations needed in interpreting Dis bytecode.

Each pool is represented by the following data structure defined in emu/port/alloc.c for
hosted builds and os/port/alloc.c for native builds:

struct Pool {
char ∗name ;
int pnum ;
ulong maxsize ;
int quanta ;
int chunk ;
int monitor ;
ulong ressize ; /∗ restricted size ∗/
ulong cursize ;
ulong arenasize ;
ulong hw ;
Lock l;
Bhdr ∗root ;
Bhdr ∗chain ;
ulong nalloc ;
ulong nfree ;
int nbrk ;
int lastfree ;
void (∗move)(void ∗,void ∗);

};

Before looking at each structure member, we examine how the instances of this structure
are initialized:

struct {
int n;
Pool pool [MAXPOOL];

/∗ Lock l; ∗/
} table = {

3,
{
{"main", 0, 32 ∗ 1024 ∗ 1024, 31, 512 ∗ 1024, 0, 31 ∗ 1024 ∗ 1024},
{"heap", 1, 32 ∗ 1024 ∗ 1024, 31, 512 ∗ 1024, 0, 31 ∗ 1024 ∗ 1024},
{"image", 2, 32 ∗ 1024 ∗ 1024 + 256, 31, 4 ∗ 1024 ∗ 1024, 1,

31 ∗ 1024 ∗ 1024},

11.3 MEMORY MANAGEMENT DATA STRUCTURES 257

}
};
Pool ∗mainmem = &table .pool [0];
Pool ∗heapmem = &table .pool [1];
Pool ∗imagmem = &table .pool [2];

In this structure named table , the member n is the number of pools. As indicated previ-
ously, there are three pools. The remainder of table is an array of three pool structures
that are partially initialized.

In the Pool structure, the name member holds a descriptive string for that pool. Here,
we have the pools named main, heap, and image. The pnum member is a numeric identi-
fier and is equal to the index into the array of pool structures. When allocating new arenas
for the pool, we are careful never to exceed maxsize bytes for the pool. In the declarations
given earlier, each of the pools is limited to 32 MB. For a hosted implementation, these
maximum sizes can be overridden by command-line arguments. Generally, any memory
allocation system will allocate only in multiples of some minimum allocation size. We
specify that minimum size with the quanta member. However, this value does not give
the allocation unit directly. Instead, the value stored here is actually 2q − 1, where 2q is
the minimum allocation size. Another way to think about this is that quanta is a mask
with 1s in the bits that must all be 0 for any valid allocation size. We see exactly how
this gets used later. Similarly, when allocating a new arena for the pool, we allocate with
a minimum size specified by the chunk structure member. The monitor flag is used as
a switch to enable or disable calling a monitoring function when memory is allocated or
freed from that pool. This is enabled only for the image pool. The last structure member
initialized at declaration time is ressize . As the comment indicates, this is a restricted
size for the pool. The effect of these values of restricted size is that only certain processes
may allocate the last megabyte of the pool’s allowable space.

As we might guess, cursize is used to record the amount of memory currently allocated
from the pool. On the other hand, arenasize gives the total amount of memory allocated
to the pool. For bookkeeping purposes, we use hw to record the peak amount of memory
allocated out of the pool over the history of the system (a high water mark). Because
updating a data structure like this is a complex operation, there are inevitably race con-
ditions with allocation and freeing. We use the lock variable l to provide exclusive access.
In the next subsection, we discuss how free blocks are stored in a binary tree. A pool’s
root structure member points to the root of the free block tree. The chain member points
to a linked list of Bhdr structures (discussed next) that describe the arenas allocated to
the pool. Figure 11-2 shows the relationship between the Pool structure and the various
Bhdr structures. In this figure, the clink pointer is part of the Bhdr structure. The next
three structure members are used for mostly statistical purposes, where nalloc records the
number of times a block is allocated from the pool, nfree does the same for calls to free
blocks, and nbrk records the number of times a new arena is added to the pool. The
lastfree member records the number of frees that had occurred as of the last time the
pool was compacted. It is used so that we don’t go to the trouble of compacting again if
there have been no freeing operations in the meantime. The last member of the structure

258 CHAPTER 11 MEMORY MANAGEMENT IN INFERNO

is a function pointer called move . This function is used as part of the pool compacting
operation.

Pool

Free
Tree

Λ

Arena List

root

chain
clink

Figure 11-2: Pool Data Structure, Arena List, and Free Tree

11.3.2 Memory Blocks

We now move to the structure of the header at the beginning of each block. This block
header is declared in include/pool.h as follows:

struct Bhdr {
ulong magic ;
ulong size ;
union {

uchar data [1];
struct {

Bhdr ∗bhl ;
Bhdr ∗bhr ;
Bhdr ∗bhp ;
Bhdr ∗bhv ;
Bhdr ∗bhf ;

} s;
#define clink u.l.link

#define csize u.l.size
struct {

Bhdr ∗link ;
int size ;

} l;

11.3 MEMORY MANAGEMENT DATA STRUCTURES 259

} u;
};

The size member of the Bhdr structure gives the size of the block in bytes. The magic

member of the structure is used to record the current status of this block. It may take on
one of the following values:

enum {
MAGIC_A = #a110c, /∗ Allocated block ∗/
MAGIC_F = #badc0c0a, /∗ Free block ∗/
MAGIC_E = #deadbabe, /∗ End of arena ∗/
MAGIC_I = #abba /∗ Block is immutable (hidden from gc) ∗/

};

As the comments imply, MAGIC_A is used to mark a block that is assigned to a particular
use, whether it be internal to the kernel or as part of a user process. Blocks that are
available to be assigned are marked with MAGIC_F. The MAGIC_E value is used as a
marker to identify the end of an arena we subdivide for allocation. Finally, blocks marked
with the value MAGIC_I are allocated only within the system rather than in response to
process requests for memory. The difference between an immutable block and a regular
allocated one is that we skip the immutable ones when scanning for garbage collection.
In other words, we don’t need to have any explicit references to such a block to keep it
allocated.

These values are similar to the hexadecimal “dead beef” used in Chapter 7 to mark
terminated processes. Here, we see that allocated blocks are identified with the word alloc

if we accept the abuse of a 1 (one) for the letter “l” and a 0 (zero) for the letter “o”.
Similarly, the free blocks are identified as bad cocoa, the end of the arena is identified as a
dead babe, and a block that we do not allow to be garbage collected is an homage to the
1970s musical group A BBA.

The rest of the data structure deserves a little more explanation. The basic idea is
pretty straightforward. When a block is allocated, we have a minimal header (the size
and magic number) followed by the data itself. However, when a block is unallocated, we
are free to use the data space of the block for our free list bookkeeping. So at times, the
bytes that follow the size are used for data whose type is determined by the process to
which the block is allocated, and at other times, we use those same bytes as administrative
values. This type of multiplicity of purposes is exactly the role for which the union type
in C was created. Here, we have a union called u with three elements. The first element,
data , is used when the block is allocated. This array of one element serves to provide us
with a pointer to the data area of an allocated block. For example, we use it in the macro:

#define B2D(bp) ((void ∗) bp~u.data)

to provide a mapping from a pointer to a block to a pointer to its data area.
The structure, s, is used for those blocks marked with the MAGIC_F magic number—

namely those that are normal free blocks. The pointers that make up this structure are

260 CHAPTER 11 MEMORY MANAGEMENT IN INFERNO

used to maintain a tree of free blocks, where each node in the tree is a doubly linked list
of blocks of equal size. If the blocks attached to a given node have size ≡ n, then the
blocks in the left subtree have size < n, and the blocks in the right subtree have size > n.
With the following definitions found in emu/port/alloc.c:

#define left u.s.bhl
#define right u.s.bhr
#define fwd u.s.bhf
#define prev u.s.bhv
#define parent u.s.bhp

we can use left and right for a node’s children in the tree. The parent macro identi-
fies a pointer to the node’s parent in the tree. Similarly, the fwd and prev macros are
pointers that make up the doubly linked list of equal-sized blocks. The net effect of this
arrangement is a binary search tree, where each node represents a given size of free block.
Multiple free blocks of the same size are kept in a doubly linked list where only the head
of the list is part of the tree structure. Figure 11-3 illustrates this design with a small
example of a free tree (or a portion of a larger tree). In this figure, the number in a box
is the size of free block represented by that box. We label all the pointers to show the
mapping from the figure to the structure definition, but the linked list structure is shown
only for the central node. Notice that all free blocks in the right subtree below the block
of 128 are larger. Also notice that all the blocks in the linked list in the middle of the
figure are the same size.

128

256 256 256

192 512

fwd

prev

parent

right

left

parent

Figure 11-3: Free Blocks

The last structure in the union, called l, is used in those block headers marked with the
MAGIC_E magic number. These block headers are used as part of the bookkeeping when

11.4 MEMORY MANAGEMENT IMPLEMENTATION 261

a new arena is added to the pool. In particular, the number of bytes in the arena is kept
in size , and link points to the block header structure of the next arena in the list.

Each block also contains a Btail structure at the end. The only member of this structure
is a pointer, hdr , which points back to the Bhdr structure at the beginning of the block.
This block trailer allows us to quickly find the header that belongs to the block immediately
preceding the one we are using.

11.4 Memory Management Implementation

With the data structures representing memory defined, we now turn our attention to the
code that manipulates those structures to allocate and free memory. In a very real sense,
all memory management operations boil down to adding and removing free blocks from a
tree.

11.4.1 Allocating Memory

Most allocations of memory inside the Inferno kernel are made through variations on
the familiar malloc() call, but all allocations are ultimately handled by the function
dopoolalloc(), defined in emu/port/alloc.c. It is in this function where we concentrate our
study. The basic strategy in dopoolalloc() can be summarized in the following steps:

1. Traverse the tree to find the best-fit block.

2. If the size of the block we found is close enough to the requested size, we return the
block.

3. If we found a block that is much larger, then we split it into an allocated block to
return and a free block to put back in the tree.

4. If we didn’t find any block at least as large as the request, then we try to allocate
a new arena for this pool and repeat the allocation attempt.

The function is declared as follows:

static void ∗dopoolalloc(Pool ∗p,ulong asize ,ulong pc)
{

where p points to the Pool structure describing the pool from which we are allocating,
and asize gives the size of the allocation request in bytes. The third argument, pc ,
is the program counter of the caller. It is used only when tracing the behavior of the
memory manager. Upon successful allocation, dopoolalloc() returns a pointer to the newly
allocated block. On failure, it returns nil . Next, we have some typical local variables that
we use as we manage the free space.

Bhdr ∗q, ∗t;
int alloc , ldr , ns , frag ;
int osize , size ;

262 CHAPTER 11 MEMORY MANAGEMENT IN INFERNO

Good programming practice always requires that we be careful to keep from acting on
unreasonable parameters. In this case, we check to make sure that asize is not outside
the realm of reason.

if (asize ≥ 1024 ∗ 1024 ∗ 1024) /∗ for sanity and to avoid overflow ∗/
return nil ;

11.4.1.1 Adjusting Request Size

Now comes the time to adjust the size of the request. We need to round the request up
to the nearest greater quantum, being careful not to forget to make room for the block
header structure.

size = asize ;
osize = size ;
size = (size + BHDRSIZE + p~quanta) & ∼(p~quanta);

The next two lines represent some administrative overhead. First, we have to gain the
mutual exclusion lock to prevent any other thread of control from interfering with us as
we work on the data structure. Then, we record the fact that our allocation count has
now gone up by one.

lock (&p~l);
p~nalloc ++;

11.4.1.2 Searching for the Best Fit

The basic allocation technique in Inferno follows a best-fit strategy. This first loop searches
for the case where we have a block in our pool that is an exact fit. If we ignore the large
if () statement inside the loop for now, then the loop is a pretty typical search through a
tree that is kept in sorted order. Along the way, we keep the variable q pointing to the
smallest block that is larger than the one we’re seeking.

t = p~root ;
q = nil ;
while (t) {

if (t~size ≡ size) {
t = t~ fwd ;
pooldel (p, t);
t~magic = MAGIC_A;
p~cursize += t~size ;
if (p~cursize > p~hw)

p~hw = p~cursize ;
unlock (&p~l);
if (p~monitor)
MM(p~pnum , pc , (ulong) B2D(t), size);

11.4 MEMORY MANAGEMENT IMPLEMENTATION 263

return B2D(t);
}
if (size < t~size) {

q = t;
t = t~ left ;

}
else

t = t~right ;
}

Now we turn our attention to the if () statement that we skipped previously. This is the
case where we actually find an exact match. In this case, we only need to remove the
block from the pool and update cursize . It is worth noting here that we advance t to
the second element in the list if there is one. (If there’s only one element, t~ fwd leaves t
unchanged.) This reduces the amount of work we have to do in taking the block out of
the data structure, because only the head of the list is part of the tree structure. Finally,
before we return we must release the mutual exclusion lock.

11.4.1.3 Splitting a Large Free Block

However, what happens if we don’t find an exact match but have at least one block larger
than the one we’re seeking? In that case, we may return the block as it is, or we may split
the block into two pieces, one of which is the size of the request, and one of which is the
remaining free space. First, we remove the block from the pool and calculate how much
would be left if we split.

if (q 6= nil) {
pooldel (p, q);
q~magic = MAGIC_A;
frag = q~size − size ;

There’s no need to bother splitting the block if the remaining free space would be too
small to be useful. We define this condition by saying that if the fragment would be less
than 32 KB and also less than one-quarter the size of the allocation, it’s too small to be
useful. The hexadecimal value 8000 is 215, which is 32 K. In this case, we just return the
whole thing.

if (frag < (size ≫ 2) ∧ frag < #8000) {
p~cursize += q~size ;
if (p~cursize > p~hw)

p~hw = p~cursize ;
unlock (&p~l);
if (p~monitor)
MM(p~pnum , pc , (ulong) B2D(q), size);

return B2D(q);
}

264 CHAPTER 11 MEMORY MANAGEMENT IN INFERNO

If the fragment would be useful, then we split the block into two parts. We do this by
constructing new tail and header structures in the middle of the block so that we now
have two adjacent blocks. The allocated one is returned, and the remainder is placed back
in the pool’s free block structure.

ns = q~size − size ;
q~size = size ;
B2T(q)~hdr = q;
t = B2NB(q);
t~size = ns ;
B2T(t)~hdr = t;
pooladd (p, t);
p~cursize += q~size ;
if (p~cursize > p~hw)

p~hw = p~cursize ;
unlock (&p~l);
if (p~monitor)
MM(p~pnum , pc , (ulong) B2D(q), size);

return B2D(q);
}

11.4.1.4 Allocating a New Arena

Now comes the most complex of the scenarios we could encounter. Namely, we didn’t
find any block as large as the one requested. This means we need to get more memory
allocated to the pool. We begin by calculating how big the arena needs to be. We want
the larger of chunk (from the Pool structure) and size (the adjusted request size).

ns = p~chunk ;
if (size > ns)

ns = size ;
ldr = p~quanta + 1;
alloc = ns + ldr + ldr ;
p~arenasize += alloc ;

It’s possible that adding enough to this pool will cause us to exceed the maxsize limit on
the pool size. In that case, we try compacting the pool with the function poolcompact ().
If we made some progress compacting, then we recursively attempt to allocate again. If
not, then there’s nothing we can do except deny the allocation request.

if (p~arenasize > p~maxsize) {
p~arenasize −= alloc ;
ns = p~maxsize − p~arenasize − ldr − ldr ;
ns &= ∼p~quanta ;

11.4 MEMORY MANAGEMENT IMPLEMENTATION 265

if (ns < size) {
if (poolcompact (p)) {

unlock (&p~l);
return poolalloc(p, osize);

}
unlock (&p~l);
print ("arena %s too large: size %d cursize %lud
 arenasize %lud maxsize %lud\n", p~name , size ,
p~cursize , p~arenasize , p~maxsize);

return nil ;
}
alloc = ns + ldr + ldr ;
p~arenasize += alloc ;

}

Finally, we come to the point where we attempt to add more memory to the pool. In
native Inferno, we call a function, xalloc(), which is specific to the hardware platform and
knows how to permanently allocate large memory blocks to pools. In hosted Inferno, we
request that the hosting OS give us more memory. We do this through the traditional
UNIX call sbrk (), which incrementally moves the border between the data and stack
spaces. For host operating systems that do not directly support sbrk (), a function is
provided to emulate it.

p~nbrk ++;
t = (Bhdr ∗) sbrk (alloc);
if (t ≡ (void ∗) −1) {

p~nbrk −−;
unlock (&p~l);
return nil ;

}
t = (Bhdr ∗) (((ulong) t + 7) & ∼7);

With the new arena added to the pool, it’s time to add it to the linked list of these arenas.
However, if it turns out that this one abuts the last one we added to this pool, we can
just combine them. With the original sbrk (), this will happen exactly when there are no
intervening allocations for other pools. The actual mechanism of combination is pretty
simple. We pretend that the new block was previously allocated, we mark the older block
as being bigger by alloc bytes, and, finally, we request that the newly allocated block be
freed. As with the compaction case, after we’ve finished the work, we recursively attempt
to satisfy the allocation request.

if (p~chain 6= nil ∧ (char ∗) t − (char ∗) B2LIMIT(p~chain) − ldr ≡ 0) {
if (0)

print ("merging chains %p and %p in %s\n", p~chain , t,
p~name);

266 CHAPTER 11 MEMORY MANAGEMENT IN INFERNO

q = B2LIMIT(p~chain);
q~magic = MAGIC_A;
q~size = alloc ;
B2T(q)~hdr = q;
t = B2NB(q);
t~magic = MAGIC_E;
p~chain~csize += alloc ;
p~cursize += alloc ;
unlock (&p~l);
poolfree (p, B2D(q)); /∗ for backward merge ∗/
return poolalloc(p, osize);

}

If, on the other hand, the newly added arena is not adjacent to an old one, we add it as
a separate arena to the pool. We do this by building the block header structure for this
arena and inserting it at the beginning of the pool’s list. At the end, we reset t to point
to the data area following the newly created header.

t~magic = MAGIC_E; /∗ Make a leader ∗/
t~size = ldr ;
t~csize = ns + ldr ;
t~clink = p~chain ;
p~chain = t;
B2T(t)~hdr = t;
t = B2NB(t);

Now that the arena management is done, we can carve out of the data area the space we
need to satisfy the allocation request.

t~magic = MAGIC_A; /∗ Make the block we are going to return ∗/
t~size = size ;
B2T(t)~hdr = t;
q = t;

In the case that the request doesn’t use the entire new arena, we’ll add the remainder to
the free tree. Finally, we clean everything up and return.

ns −= size ; /∗ Free the rest ∗/
if (ns > 0) {

q = B2NB(t);
q~size = ns ;
B2T(q)~hdr = q;
pooladd (p, q);

}
B2NB(q)~magic = MAGIC_E; /∗ Mark the end of the chunk ∗/

11.4 MEMORY MANAGEMENT IMPLEMENTATION 267

p~cursize += t~size ;
if (p~cursize > p~hw)

p~hw = p~cursize ;
unlock (&p~l);
if (p~monitor)
MM(p~pnum , pc , (ulong) B2D(t), size);

return B2D(t);
}

The result of all the slicing and dicing of the newly allocated arena is shown in Fig-
ure 11-4. In the figure, the boxes marked E are the Bhdr structures with magic ≡
MAGIC_E. In other words, these are the markers at the beginning and the end of the
arena, with the first one being placed in the linked list of arenas attached to the Pool

structure. The box marked A is the Bhdr structure for the allocated block, and the one
marked F is for the free block. The arrows show the pointers from the block trailers back
to the headers.

E A Allocated F Free E

Figure 11-4: A New Arena Divided into Allocated (A) and Free (F) Blocks with Arena
Markers (E)

11.4.2 Removing a Free Block from the Tree

In dopoolalloc(), we make use of two functions that update the free block tree. These are
pooldel () and pooladd (). Because satisfying an allocation request implies that we must
remove a free block from the tree, we examine pooldel () here and save pooladd () for the
next section.

The easiest case is the one where the block we want to remove is part of a linked list
but is not the head of that list. In determining that this is the case, we have to be careful
to treat the root list differently. All other list heads point to their parent. For this case,
we just remove it from the linked list and we’re done.

void pooldel (Pool ∗p,Bhdr ∗t)
{

Bhdr ∗s, ∗f, ∗rp , ∗q;

if (t~parent ≡ nil ∧ p~root 6= t) {
t~prev~ fwd = t~ fwd ;
t~ fwd~prev = t~prev ;

