Al Mamoun University College Medical Instrumentation Engineering Technologies



# Digital Signal Processing (DSP)

For the Third Class

Prof. Dr. Abdulrahman H. Majeed

2024-2025

Department of Medical Instrumentation Techniques Engineering

# **Digital Signal Processing**

# Signal

A signal is defined as any *physical quantity* that varies with *time*, *space*, or any other *independent variable* or *variables*.

Examples of signals that we encounter frequently are *speech*, *music*, *picture*, and *video signals*.

Mathematically, we describe a signal as a *function* of *one* or *more independent variables*.

For example, the functions

# $s_1(t)=5t$ $s_2(t)=20t^2$

Describes two signals, one that varies linearly with the independent variable t (time) and a second that varies quadratically with t.

Dimensional signals have two independent variables. For example, image is a 2 - D signal whose independent variables are the two spatial coordinates (x,y)

 $s(x,y)=3x+2xy+10y^2$  (Two independent variables.)

Video is a 3 – dimensional signal whose independent variables are the two spatial coordinates, (x,y) and time (t).

Similarly, a 3 - D picture is also a 3 - D signal whose independent variables are the three spatial coordinates (x,y,z).

# Processing

The operation performed on the signal by the system is called *Signal Processing*.

2024-2025

## **Digital Signal Processing**

Digital Signal Processing of signals may consist of a number of *mathematical operations* as specified by a *software program*, in which case, the program represents an implementation of the system in software. Alternatively, digital processing of signals may also be performed by *digital hardware* (logic circuits). So, a digital system can be implemented as a combination of *digital hardware and software*, each of which performs its own set of specified operations.

# **Block Diagram Representation of Digital Signal Processing**



# Advantages of Digital Signal Processing over Analog Signal Processing

1. A digital programmable system allows flexibility in reconfiguring the digital signal processing operations simply by changing the program.

Reconfiguration of an analog system usually implies a redesign of the hardware followed by testing and verification.

2. Tolerances in analog circuit components and power supply make it extremely difficult to control the accuracy of analog signal processor.

A digital signal processor provides better control of accuracy requirements in terms of word length, floating – point versus fixed – point arithmetic, and similar factors.

- 3. Digital signals are easily stored on magnetic tapes and disks without deterioration or loss of signal fidelity beyond that introduced in A/D conversion. So the signals become transportable and can be processed offline.
- 4. Digital signal processing is cheaper than its analog counterpart.
- 5. Digital circuits are amenable for full integration. This is not possible for analog circuits because inductances of respectable value (μH or mH) require large space to generate flux.
- 6. The same digital signal processor can be used to perform two operations by time multiplexing, since digital signals are defined only at finite number of time instants.
- 7. Different parts of digital signal processor can work at different sampling rates.
- 8. It is very difficult to perform precise mathematical operations on signals in analog form but these operations can be routinely implemented on a digital computer using software.
- 9. Several filters need several boards in analog signal processing, whereas in digital signal processing, same DSP processor is used for many filters.

# Disadvantages of Digital Signal Processing over Analog Signal Processing

- 1. Digital signal processors have increased complexity.
- 2. Signals having extremely wide bandwidths require fast sampling rate ADCs. Hence the frequency range of operation of DSPs is limited by the speed of ADC.
- 3. In analog signal processor, passive elements are used, which dissipate very less power.
- In digital signal processor, active elements like transistors are used, which dissipate more power.

# CLASSIFICATION OF SIGNALS

There are five methods of classifying signals based on different features :

- (a) Based on independent variable.
- (b) Depending upon the number of independent variable.
- (c) Depending upon the certainity by which the signal can be uniquely described.
- (d) Based on repetition nature.
- (e) Based on reflection.
  - a) Based on independent variables

# Analog signal:

A signal that is defined for every instants of time is known as *analog signal*. Analog signals are *continuous* in *amplitude* and *continuous* in *time*. It is denoted by x(t). It is also called as *continuous time signal*.

Department of Medical Instrumentation Techniques Engineering



**Continuous time signal** 

# **Digital signal**

The signals that are *discrete in time* and *quantized in amplitude* is called digital signal.



**Digital Signal** 

## **Continuous time signal:**

A signal that is defined for every *instants of time* is known as *continuous time signal*. Continuous time signals are *continuous in amplitude and continuous in time*. It is denoted by x(t).

e.g. Speech signal is an example of analog signal.

## Discrete time signal:

A signal that is defined for *discrete instants of time* is known as *discrete time signal*. Discrete time signals are *continuous in amplitude and* 

5

2024-2025

*discrete in time.* It is also obtained by sampling a continuous time signal. It is denoted by x(n).

e.g. Digitized music signal stored in CD-ROM disk.

#### (b) Depending upon the number of independent variable.

- (i) 1-D Signals. It is a function of a single independent variable.
  - e.g. (a) speech signal-independent variable is time.
  - (b) music signal.
- (ii) 2-D Signal. It is a function of two independent variables.

e.g. Photographic image signal-two independent variables are the two spatial variables.

Each frame of a black and white video signal is a 2D-image signal that is a function of two discrete spatial variable, with each frame occurring squentially at discrete instants of time.

#### (iii) M-D Signal. It is a function of 'M' independent variable in time. e.g. Video signal.

The black and white video signal can be considered an example of a 3D signal where the three independent variables are two spatial variables and time.

A colour video signal is a three-channel signal composed of three 3-D signals representing the three primary colours : red, green and blue (RGB).

# c) Depending up on the certainly by which the signal can be uniquely described.

(i) Deterministic Signal. A signal that can be uniquely determined by a well-defined process such as a mathematical expression or rule, or table look-up is called a deterministic signal.

e.g. (a) A sinusoidal signal can be represented as,  $v(t) = V_m \sin \omega t \text{ for } t \ge 0.$ 

2024-2025

Department of Medical Instrumentation Techniques Engineering



 (ii) Random Signal. A signal that is generated in a random fashion and cannot be predicted ahead of time is called a "random signal".
 e.g. Speech signal, ECG signal, EEG signals.

#### d)Based on repetition nature.

#### Periodic and Aperiodic signal

#### **Periodic signal**:

A signal is said to periodic if it *repeats* again and again over a certain period of time.

#### Aperiodic signal:

A signal that does *not repeat* at a definite interval of time is called aperiodic signal.

### **Continuous domain:**

2024-2025

Department of Medical Instrumentation Techniques Engineering

A Continuous time signal is said to periodic if it satisfies the condition

x(t) = x(t+T)where T is fundamental time period. If the above condition is not satisfied then the signal is said to be Aperiodic. If frequency  $f = \frac{1}{T}$  Hz then the angular frequency  $\Omega = 2\pi f = \frac{2\pi}{T}$ rad/sec, fundamental time period  $T = \frac{2\pi}{\rho}$ , e.g. Sine wave, square wave, triangular wave etc., x(t)4 x(t)4 Sine wave square wave **Triangular** wave discrete or impulse wave

#### **Discrete domain:**

A Discrete time signal is said to periodic if it satisfies the condition

$$x(n) = x(n+N)$$

where N is fundamental time period (integer).

If the above condition is not satisfied then the signal is said to be

2024-2025

Department of Medical Instrumentation Techniques Engineering

oesin

#### Aperiodic.

Fundamental time period N =  $\frac{2\pi}{\omega}$ , where  $\omega$  is discrete fundamental angular frequency in rad/sec.

EXAMPLE: The signals

$$x_{1}(n) = a^{n}u(n) = \begin{cases} a^{n} & n \ge 0\\ 0 & n < 0 \end{cases}$$

$$x_2(n) = \cos(n^2)$$

are not periodic, whereas the signal.

$$x_3(n) = e^{j\pi n/8}$$

is periodic and has a fundamental period of N = 16.

(sol: 
$$x_3(n) = x_3(n+N) \Longrightarrow e^{j\left(\pi\frac{n}{8}\right)} = e^{j(2\pi fn)}$$
  
 $\pi\frac{n}{8} = 2\pi fn$   
 $\Longrightarrow f = \frac{1}{16} \Longrightarrow N = \frac{1}{f} \Longrightarrow N = 16)$ 

If  $x_1(n)$  is a signal that is periodic with a period N<sub>1</sub>, and  $x_2(n)$  is another signal that is periodic with a period N<sub>2</sub>, the sum

$$x(n) = x_1(n) + x_2(n)$$

2024-2025

Department of Medical Instrumentation Techniques Engineering

will always be periodic and the fundamental period is

$$N = \frac{N_1 N_2}{\gcd\left(N_1, N_2\right)}$$

where gcd ( $N_1$ ,  $N_2$ ) means the greatest common divisor of N<sub>1</sub> and N<sub>2</sub>. The same is true for the product.

$$x(n) = x_1(n)x_2(n)$$

will always be periodic and the fundamental period is

$$N = \frac{N_1 N_2}{\gcd(N_1, N_2)}$$

#### **Examples**

1- Determine whether or not each of the following signals are periodic? If a signal is periodic, determine its fundamental period.

a- 
$$x(t) = cos(t + \frac{\pi}{4})$$
 b-  $x(t) = cos\left(\frac{\pi}{3}t\right) + sin(\frac{\pi}{4}t)$   
 $c - x(t) = cost + sin\sqrt{2}t$  t  
sol:  
a-  $x(t) = x(t + T)$   
 $cos(t + \frac{\pi}{4}) = cos(t + \frac{\pi}{4} + T)$ )  
 $cos(t + \frac{\pi}{4} + 2\pi) = cos(t + \frac{\pi}{4} + T)$ )  
 $t + \frac{\pi}{4} + 2\pi = t + \frac{\pi}{4} + T$   $\Rightarrow T = 2\pi$   
b-sol:  $x(t) = cos\left(\frac{\pi}{3}t\right) + sin(\frac{\pi}{4}t)$   
 $x_1(t) = cos\left(\frac{\pi}{3}t\right)$  is a periodic

2024-2025

Department of Medical Instrumentation Techniques Engineering

$$cos\left(\frac{\pi}{3}t\right) = cos(2\pi ft) \implies \left(\frac{\pi}{3}t\right) = (2\pi ft) \implies \frac{\pi}{3} = 2\pi f \implies f = \frac{1}{6}$$
$$T_1 = \frac{1}{f} = 6$$

$$x_{1}(t) = \cos\left(\frac{\pi}{3}t\right) \text{ is a periodic}$$

$$\sin\left(\frac{\pi}{4}t\right) = \sin(2\pi ft) \implies \left(\frac{\pi}{4}t\right) = (2\pi ft) \implies \frac{\pi}{4} = 2\pi f \implies f = \frac{1}{8}$$

$$T_{2} = \frac{1}{f} = 8$$

So,

 $\frac{T_1}{T_2} = \frac{6}{8} = \frac{3}{4}$  is rational number  $\implies x(t)$  is periodic with period

 $T = 3T_2 = 24 \text{ sec}$ Or  $T = 4T_1 = 24 \text{ sec}$ c- $x(t) = cost + sin\sqrt{2}t$ sol:  $x_1(t) = cost$  is a periodic  $(2\pi ft) = t \implies 2\pi f = 1 \implies f = \frac{1}{2\pi}$ 

$$T_1 = \frac{1}{f} = 2\pi$$

 $x_1(t) = \sin\sqrt{2}t$  is a periodic

$$(2\pi ft) = \sqrt{2}t \Longrightarrow 2\pi f = \sqrt{2} \Longrightarrow f = \frac{\sqrt{2}}{2\pi} \Longrightarrow T_2 = \frac{2\pi}{\sqrt{2}}$$

So,  $\frac{T_1}{T_2} = \frac{2\pi}{\frac{2\pi}{\sqrt{2}}} = \sqrt{2}$  is not rational number  $\implies x(t)$  is not periodic

11

#### e)Based on reflection.

2024-2025

#### Even and Odd Signals

(i) Even signal (symmetric). A signal x(t) or x(n) is referred to as even signal, if it is identical to its time reversal counter part *i.e.*, with its about the origin.

x(t) = x(-t) for all 't' CT even signal.

x(n) = x(-n) for all 'n' DT even signal.

\*Even signals are symmetric with respect to vertical axis.

e.g.

and



(ii) Odd signal (antisymmetric). A signal is said to be odd signal if, x(t) = -x(-t) for CT signal. x(n) = -x(-n) for DT signal.

e.g.



A real – valued discrete – time signal is called an *Even Signal* if it is identical with its reflection about the *origin* .i.e., it must be *symmetrical* about the vertical axis.

$$\mathbf{x}(\mathbf{n}) = \mathbf{x}(-\mathbf{n}) \quad \forall \mathbf{n}$$

A real – valued discrete – time signal is called an **Odd Signal** if it is

12

2024-2025

Department of Medical Instrumentation Techniques Engineering

antisymmetrical about the vertical axis.

 $x(n) = -x(-n) \quad \forall n$ 

Every signal x[n] can be expressed as the sum of its even and odd components.  $x[n] = x_e[n] + x_o[n]$ 

Where

$$x_e[n] = \frac{x[n] + x[-n]}{2}$$
$$x_o[n] = \frac{x[n] - x[-n]}{2}$$

- 1. The sum of two even signals are even signal.
- 2. The sum of two odd signals are odd signal.
- 3. The sum of an even signal and an odd signal is neither even nor odd signal.
- 4. Product of even and odd sequences results is an odd sequence.
- 5. Product of two odd sequences results is an even sequence.
- 6. Product of two even sequences results is an even sequence.

## System

A system is a *physical device* that performs an *operation* on a signal. For example, natural signals are generated by a system that responds to a stimulus or force. For eg., speech signals are generated by forcing air through the *vocal cords*. Here, the vocal cord and the vocal tract constitute the *system* (also called the vocal cavity). The air is the stimulus.

The stimulus along with the system is called a signal source.

An electronic filter is also a *system*. Here, the system performs an operation on the signal, which has the effect of *reducing the noise* and interference from the desired information – bearing signal.

Department of Medical Instrumentation Techniques Engineering

When the signal is passed through a system, the signal is said to have been processed.

# **Multiple Choice Questions**

Circle the correct answer:-

## 1. A signal is defined as any physical quantity that varies with:

a-time,

b-space,

c-any other independent variable or variables,

d-All of the above

## 2. Discrete time signal is a function of:-

### a- Integer-valued variable n.

- b- Fractional variable, n.
- c- Time.
- d- Speed.
- 3. The signal  $x(t) = e^{j\frac{\pi n}{8}}$  is periodic and has a fundamental period of

- b-12 **c**-16 d-4 a- 8
- 4. If  $x_1(n)$  is a signal that is periodic with a period N<sub>1</sub>, and  $x_2(n)$  is another signal that is periodic with a period N<sub>2</sub>, the sum

$$x(n) = x_1(n) + x_2(n)$$

will always be periodic and the fundamental period is:

a-
$$x(t) = -x(t)$$
  
b- $x(t) = -x(-t)$   
c- $x(t) = x(-t)$   
d- $x(t) = x(2t)$ 

5.A signal is odd signal if it satisfies:

a-
$$x(t) = -x(t)$$
  
b- $x(t) = -x(-t)$   
c- $x(t) = x(-t)$   
d- $x(t) = x(2t)$ 

- 6. The odd part of a signal x(t) is: a- x(t) + x(-t) b- x(t) - x(-t)c- $\frac{1}{2}(x(t) + x(-t))$  d-  $\frac{1}{2}(x(t) - x(-t))$
- 7. The even part of a signal x(t) is: a- x(t) + x(-t) b- x(t) - x(-t)c-  $\frac{1}{2}(x(t) + x(-t))$  d-  $\frac{1}{2}(x(t) - x(-t))$

#### 8. The sum of two even signals are:

- **a- even signal.** b-odd signal
- c- neither even nor odd d- Any one of above

#### 9. The sum of two odd signals are

2024-2025

Department of Medical Instrumentation Techniques Engineering

a- even signal.

#### **b**-odd signal

c-neither even nor odd signal d-Any one of above

#### 10. The sum of an even signal and an odd signal is:

a- even signal. b-odd signal

c- neither even nor odd signal d- Any one of above •

#### 11.Product of even and odd signals results is:

a- an odd signalb- an even signalc- neither even nor odd signald- Any one of above

#### 12.Product of two even signals is:

a- an odd signalb- an even signalc- neither even nor odd signald- Any one of above

#### 13.Product of two odd signals is:

- a- an odd signalb- an even signalc- neither even nor odd signald- Any one of above
- e nether even her oud signal d Thiy one of doove

#### **14.**The independent variable n in a signal x(n) represents:

a-Time b-Distance c-Spatial coordinate d- Any one of above

#### 15. Discrete-time signals are often derived by:-

2024-2025

Prof. Dr. Abdulrahman H. Majeed

Department of Medical Instrumentation Techniques Engineering

a- Sound.

**b**- Sampling a continuous-time signal.

c- Digital signal.

d- Random signal.

#### 16. Discrete-time signal may be:-

a- Complex valued. b- Real valued.

c- Imaginary valued. **d- Any of above.** 

# 17.If x(n) is a discrete-time signal, then the value of x(n) at non integer value of 'n' is:

a- Zero b-Positive c- Negative d- Not defined

Explanation: For a discrete time signal, the value of x(n) exists only at integral values of n. So, for a non-integer value of 'n' the value of x(n) does not exist.

# 18. Which of the following should be done in order to convert a

continuous-time signal to a discrete-time signal?

**a- Sampling** b- Differentiating

c- Integrating d- None of the mentioned

Explanation: The process of converting a continuous-time signal into a discrete-time signal by taking samples of continuous time signal at discrete time instants is known as 'sampling'.

#### 9. The relation between analog frequency 'F' and digital frequency 'f'

is:

2024-2025

a- F=f\*T (where T is sampling period)

**b-** f=F\*T

c- No relation

d- None of the mentioned

Explanation: Consider an analog signal of frequency 'F', which when sampled periodically at a rate  $F_s=1/T$  samples per second yields a frequency of f=F/Fs => f=F\*T.

Fill in the following blanks with the correct answers?

1.Analog signals are ..... in amplitude and ..... in time.

Ans. (continuous)

- 2. The signals that are discrete in ...... and quantized in..... is called digital signal. Ans. (Time, amplitude)
- 3. A digital system can be implemented as a combination of digital ...... and ......, each of which performs its own set of specified operations.

18

Ans. (hardware, software)

- 4.Examples of random signal are ....., and ....., and ......, Ans.(Speech signal, ECG signals, EEG signals)
- 5.Examples of 1-D signal are .....,and ...... Ans. (Speech signal, music)

2024-2025

- 6. Examples of 2-D signal are .....,and ..... Ans. (photographic image, black and white video)
- 7.Examples of M-D signal is..... Ans. (video)
- 8. A signal is said to ..... if it repeats again and again over a certain period of time.
  Ans. (noriodia)

Ans. (periodic)

- 9. A Discrete time signal is said to periodic if it satisfies the condition...... where N is fundamental time period (integer).
  Ans.(x (n) = x (n + N))
- 10. A continuous time signal is said to be periodic if it satisfies the condition...... where T is fundamental time period.
  Ans.(x (t) = x (t + T))
- 11. A real valued discrete time signal is called an Even Signal if it must be symmetrical about the ......Ans. (vertical axis)
- 12. A real valued discrete time signal is called an *Odd Signal* if it is *antisymmetrical* about the .....

Ans. (vertical axis)

#### H.W

Show that whether the following signals are odd or even?

2024-2025

Department of Medical Instrumentation Techniques Engineering

~005<sup>é</sup>

a)x(t)=t b) $x(t)=5\cos(3t)$  c)  $x(t)=\sin(t)$ 

### Ans. a-odd, b-even, c-odd.

2024-2025

Prof. Dr. Abdulrahman H. Majeed