Electromagnetic

Second year / First semester Lecture 2

Assist. lec. Zahraa Mohammed

OTHER COORDINATE SYSTEMS: CIRCULAR CYLINDRICAL COORDINATES

The variables of the rectangular and cylindrical coordinate systems are easily related to each other. Referring to Figure 1.7, we see that

$$x = \rho \cos \phi$$

$$y = \rho \sin \phi$$

$$z = z$$
(10)

From the other viewpoint, we may express the cylindrical variables in terms of x, y, and z:

$$\rho = \sqrt{x^2 + y^2} \quad (\rho \ge 0)$$

$$\phi = \tan^{-1} \frac{y}{x}$$

$$z = z$$
(11)

Figure 1.7 The relationship between the rectangular variables x, y, z and the cylindrical coordinate variables ρ , ϕ , z. There is no change in the variable z between the two systems.

Electromagnetic Waves

vectors is generally required. That is, we may be given a rectangular vector

$$\mathbf{A} = A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z$$

where each component is given as a function of x, y, and z, and we need a vector in cylindrical coordinates

$$\mathbf{A} = A_{\rho} \mathbf{a}_{\rho} + A_{\phi} \mathbf{a}_{\phi} + A_{z} \mathbf{a}_{z}$$

where each component is given as a function of ρ , ϕ , and z.

To find any desired component of a vector, we recall from the discussion of the dot product that a component in a desired direction may be obtained by taking the dot product of the vector and a unit vector in the desired direction. Hence,

$$A_{\rho} = \mathbf{A} \cdot \mathbf{a}_{\rho}$$
 and $A_{\phi} = \mathbf{A} \cdot \mathbf{a}_{\phi}$

Expanding these dot products, we have

$$A_{\rho} = (A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z) \cdot \mathbf{a}_{\rho} = A_x \mathbf{a}_x \cdot \mathbf{a}_{\rho} + A_y \mathbf{a}_y \cdot \mathbf{a}_{\rho}$$
 (12)

$$A_{\phi} = (A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z) \cdot \mathbf{a}_{\phi} = A_x \mathbf{a}_x \cdot \mathbf{a}_{\phi} + A_y \mathbf{a}_y \cdot \mathbf{a}_{\phi}$$
 (13)

and

$$A_z = (A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z) \cdot \mathbf{a}_z = A_z \mathbf{a}_z \cdot \mathbf{a}_z = A_z$$
(14)

since $\mathbf{a}_z \cdot \mathbf{a}_\rho$ and $\mathbf{a}_z \cdot \mathbf{a}_\phi$ are zero.

Table 1.1 Dot products of unit vectors in cylindrical and rectangular coordinate systems

	$\mathbf{a}_{ ho}$	\mathbf{a}_{ϕ}	\mathbf{a}_{z}
\mathbf{a}_{x} .	$\cos \phi$	$-\sin\phi$	0
$\mathbf{a}_{\mathbf{y}}$.	$\sin \phi$	$\cos \phi$	0
\mathbf{a}_z .	0	0	1

EXAMPLE 1.3

Transform the vector $\mathbf{B} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$ into cylindrical coordinates.

Solution. The new components are

$$B_{\rho} = \mathbf{B} \cdot \mathbf{a}_{\rho} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho})$$

$$= y \cos \phi - x \sin \phi = \rho \sin \phi \cos \phi - \rho \cos \phi \sin \phi = 0$$

$$B_{\phi} = \mathbf{B} \cdot \mathbf{a}_{\phi} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\phi})$$

$$= -y \sin \phi - x \cos \phi = -\rho \sin^{2} \phi - \rho \cos^{2} \phi = -\rho$$

Thus,

$$\mathbf{B} = -\rho \mathbf{a}_{\phi} + z \mathbf{a}_{z}$$

D1.5. (a) Give the rectangular coordinates of the point $C(\rho = 4.4, \phi = -115^{\circ}, z = 2)$. (b) Give the cylindrical coordinates of the point D(x = -3.1, y = 2.6, z = -3). (c) Specify the distance from C to D.

Ans.
$$C(x = -1.860, y = -3.99, z = 2); D(\rho = 4.05, \phi = 140.0^{\circ}, z = -3); 8.36$$

D1.6. Transform to cylindrical coordinates: (a) $\mathbf{F} = 10\mathbf{a}_x - 8\mathbf{a}_y + 6\mathbf{a}_z$ at point P(10, -8, 6); (b) $\mathbf{G} = (2x + y)\mathbf{a}_x - (y - 4x)\mathbf{a}_y$ at point $Q(\rho, \phi, z)$. (c) Give the rectangular components of the vector $\mathbf{H} = 20\mathbf{a}_\rho - 10\mathbf{a}_\phi + 3\mathbf{a}_z$ at P(x = 5, y = 2, z = -1).

Ans. $12.81a_{\rho} + 6a_{z}$; $(2\rho\cos^{2}\phi - \rho\sin^{2}\phi + 5\rho\sin\phi\cos\phi)a_{\rho} + (4\rho\cos^{2}\phi - \rho\sin^{2}\phi - 3\rho\sin\phi\cos\phi)a_{\phi}$; $H_{x} = 22.3$, $H_{y} = -1.857$, $H_{z} = 3$

THE SPHERICAL COORDINATE SYSTEM

The transformation of scalars from the rectangular to the spherical coordinate system is easily made by using Figure 1.8a to relate the two sets of variables:

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta$$
(15)

The transformation in the reverse direction is achieved with the help of

$$r = \sqrt{x^2 + y^2 + z^2} \qquad (r \ge 0)$$

$$\theta = \cos^{-1} \frac{z}{\sqrt{x^2 + y^2 + z^2}} \qquad (0^\circ \le \theta \le 180^\circ)$$

$$\phi = \tan^{-1} \frac{y}{x}$$
(16)

The radius variable r is nonnegative, and θ is restricted to the range from 0° to 180° , inclusive. The angles are placed in the proper quadrants by inspecting the signs of x, y, and z.

Table 1.2 Dot products of unit vectors in spherical and rectangular coordinate systems

	\mathbf{a}_r	$\mathbf{a}_{ heta}$	\mathbf{a}_{ϕ}
\mathbf{a}_x .	$\sin\theta\cos\phi$	$\cos\theta\cos\phi$	$-\sin\phi$
ay.	$\sin\theta\sin\phi$	$\cos\theta\sin\phi$	$\cos \phi$
\mathbf{a}_z .	$\cos \theta$	$-\sin\theta$	0

vector in the direction of the rectangular vector, the dot products with \mathbf{a}_z are found to be

$$\mathbf{a}_z \cdot \mathbf{a}_r = \cos \theta$$
$$\mathbf{a}_z \cdot \mathbf{a}_\theta = -\sin \theta$$
$$\mathbf{a}_z \cdot \mathbf{a}_\phi = 0$$

The dot products involving \mathbf{a}_x and \mathbf{a}_y require first the projection of the spherical unit vector on the xy plane and then the projection onto the desired axis. For example, $\mathbf{a}_r \cdot \mathbf{a}_x$ is obtained by projecting \mathbf{a}_r onto the xy plane, giving $\sin \theta$, and then projecting $\sin \theta$ on the x axis, which yields $\sin \theta \cos \phi$. The other dot products are found in a like manner, and all are shown in Table 1.2.

and the property of a second

D1.7. Given the two points, C(-3, 2, 1) and $D(r = 5, \theta = 20^{\circ}, \phi = -70^{\circ})$, find: (a) the spherical coordinates of C; (b) the rectangular coordinates of D; (c) the distance from C to D.

Ans. $C(r = 3.74, \theta = 74.5^{\circ}, \phi = 146.3^{\circ}); D(x = 0.585, y = -1.607, z = 4.70);$ 6.29

D1.8. Transform the following vectors to spherical coordinates at the points given: (a) $10\mathbf{a}_x$ at P(x=-3, y=2, z=4); (b) $10\mathbf{a}_y$ at $Q(\rho=5, \phi=30^\circ, z=4)$; (c) $10\mathbf{a}_z$ at $M(r=4, \theta=110^\circ, \phi=120^\circ)$.

Ans. $-5.57a_r - 6.18a_\theta - 5.55a_\phi$; $3.90a_r + 3.12a_\theta + 8.66a_\phi$; $-3.42a_r - 9.40a_\theta$