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GAUSS’S LAW

D.S‘ nowmal
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Figure 3.2 The electric flux density Dg at P arising
from charge Q. The total flux passing through ASis
Ds - AS.

where we are able to apply the definition
The rotal flux passing through the cl
ferential contributions crossing each surf:

¢=fd‘-1’:

(5)
= % Dg « dS = charge enclosed = Q
5

or a volume charge distribution,

0= f Py dv
viol

The last form is usually used, and we should agree now that it represents any or
all of the other forms. With this understanding, Gauss’s law may be written in terms

of the charge distribution as
fﬂ's'ds =f Py dv
5 vol

(6)
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To illustrate the application of Gauss's law, let us check the results of Faraday's
experiment by placing a point charge ( at the origin of a spherical coordinate system
(Figure 3.3) and by choosing our closed surface as a sphere of radius a.

Solution. We have, as before,

Al the surface of the sphere,
¢

dra®

u; = a,

The differential element of area on a spherical surface is, in spherical coordinates
from Chapter 1,

dS=r’sinfdédp =a’sinfdbdo
or
dS = a’sinf df do a,

The integrand is

Dg-dS = Q.,ulsinﬁidﬁd-;&a,*a, = Esinadad.p
dra- 47

leading to the closed surface integral

g=lr pl=x Q
f f — sinf df d¢
o=l Ji=g 4r

2r 2x
fﬂ %(—cusﬂ)gdrﬁ:fﬂ Ly v—

2



Electromagnetic Waves

The Steady Magnetic Field

The relation of the steady magnetic field to its source 1s more complicated than
Is the relation of the electrostatic field to its source. We will find it necessary to
accept several laws temporarily on faith alone. The proof of the laws does exist and
1s available on the Web site for the disbelievers or the more advanced student. B

BIOT-SAVART LAW

Free space
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Figure 7.1 The law of Biot-Savart
expresses the magnetic field intensity dH;
produced by a differential current element
/.dL,. The direction of dH; is into the

page.

'''''

The units of the magnetic field intensity H are evidently amperes per meter (A/m).
The geometry is illustrated in Figure 7.1, Subscripts may be used to indicate the point
to which each of the quantities in (1) refers. If we locate the current element at point |
and describe the point P at which the field is to be determined as point 2, then

f[dl.q X ag)2
47R;,

dH; = (2)
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The Biot-Savart law may also be expressed in terms of distributed sources, such

as current density J and surface current density K. Surface current flows in a sheet of
vanishingly small thickness, and the current density J, measured in amperes per square

meter, is therefore infinite. Surface current density, however, is measured in amperes
per meter width and designated by K. If the surface current density is uniform, the
total current / in any width b is

I=Kb

where we assume that the width b 1s measured perpendicularly to the direction in which
the current is flowing. The geometry is illustrated by Figure 7.2. For a nonuniform
surface current density, integration is necessary:

:=fm| (4)

where dN is a differential element of the path across which the current is flowing.
Thus the differential current element / dL., where dL is in the direction of the current,
may be expressed in terms of surface current density K or current density J,

=

Figure 7.2 The total current / within a
transverse width b, in which there is a uniform
surface current density K, is Kb.
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where dN 1s a differential element of the path across which the current is flowing.
Thus the differential current element / dL., where dL is in the direction of the current,
may be expressed in terms of surface current density K or current density J,

and alternate forms of the Biot-Savart law obtained,

=

K xapd§
| g _j: 47 R? ©)
and
J x ﬂgdl}
= 7
< vol 4JTRI ()

{(Point 1)

fra, (Point 2)

Figure 7.3 An infinitely long straight filament
carrying a direct current /. The fieid at point 2 is

H) = — (8)
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H 1s most

easily expressed in terms of the angles @) and «;, as identified in the figure. The
result is

/
H= m[sin 0y — SinQ) )a, (9)

If one or both ends are below point 2, then ; is or both @) and «; are negative.
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As a numerical example illustrating the use of (9), we determine H at P»(0.4, 0.3, 0)
in the field of an 8. A filamentary current is directed inward from infinity to the origin
on the positive x axis, and then outward to infinity along the y axis. This arrangement
1s shown 1n Figure 7.6.

Solution. We first consider the semi-infinite current on the x axis, identifying the
two angles, a;, = —90° and &3, = tan~'(0.4/0.3) = 53.1°. The radial distance p is
measured from the x axis, and we have p, = 0.3. Thus, this contribution to H; is

12

(sin53.1° + lay = %{LS}% = ?%

Hlm — 4:'1'[“-3}

The unit vector a; must also be referred to the x axis. We see that it becomes —a;.
Therefore,

12

4

For the current on the y axis, we have ), = — tan='(0.3/0.4) = =36.9°, o2, = 90°,
and p, = 0.4. It follows that

!
— | +5in36.9°)(—-a,) = ——a, A/
43(0‘4][ sin )(—a.) Hn‘ m

Adding these results, we have

20
Hz = HZ{:{} -+ Hz[_-.,-] = ——4d; = —6.3'?33 A/m

o

ay, (“‘\ﬂ

L
@\ Py(0.4,03,0)
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AMPERE'’S CIRCUITAL LAW

Ampére’s circuital law states that the line integral of H about any closed path 1s
exactly equal to the direct current enclosed by that path,

|§H..ﬂ=;

We define positive current as flowing in the direction of advance of a right-handed
screw turned in the direction in which the closed path is traversed.

(10)

In our example, the path must be a circle of radius p, and Ampére’s circuital law
becomes

P

2 p
f"-dl‘:f Hﬁﬂd¢=H¢pf do = Hy2np = |
0 0

or

CURL

We completed our study of Gauss’s law by applying it to a differential volume element
and were led to the concept of divergence. We now apply Ampere'’s circuital law to
the perimeter of a differential surface element and discuss the third and last of the
special derivatives of vector analysis, the curl. Our objective is to obtain the point
form of Ampeére’s circuital law.

"H.dL
(curl H)y = lim f

ASy=0 ASy

(21)




Electromagnetic Waves

In rectangular coordinates, the definition

This result may be written in the form of a determinant,

a, a, a

d o d

curlH = 5 5 =
H, H, H,

and may also be written in terms of the vector operator,

‘curlH:?le

dH, dH, dH dH dH, 0H
i ( i AY dz )a i 0z dx B dx dy ~

| 8H,  oH, 3H, mﬁ)
VieH= (=22 o -
§ (p 3 oz )“”+( 3z o )™

1 d(pH, I
4 (_ =) _ —%)ﬂz (cylindrical)

p op p 0¢

(25)
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EXAMPLE 7.2

As an example of the evaluation of curl H from the definition and of the evaluation of
another line integral, suppose that H = 0.2z%a, for z > 0, and H = 0 elsewhere, as
shown in Figure 7.15. Calculate § H - dL about a square path with side d, centered
at (0, 0, z;) in the ¥y = 0 plane where z; > d/2.

L
L

Solution. We evaluate the line integral of H along the four segments, beginning at
the top:

fﬂ-dL =02(z + 1d)’d+0-02(z, - 1d)’d +0

= 0.42,d*

In the limit as the area approaches zero, we find

. §H-dL _  04z,d
v = lim f—— =
(V. x40 ;lrl-r-ltl d? jl-[-‘?: d?

= 0.4z,

The other components are zero, so V x H = 0.4z)a,.
To evaluate the curl without trying to illustrate the definition or the evaluation of
a line integral, we simply take the partial derivative indicated by (23):

8 8y &

d d d b

VxH=| 2 o 5| = 50208 =04z,

0222 0 O

which checks with the preceding result when z = z,.



