Polynomials

Polynomial evaluation at any given point:
Suppose $\mathrm{P}(\mathrm{x})=x^{2}+2 \mathrm{x}+3$ and we want to calculate $\mathrm{P}(10)$?
$\gg \mathrm{p}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] ;$
>> polyval(p,10)
ans $=123$
Roots of polynomial:
Suppose we want to fine the roots of the previous polynomial:
>> roots(p)
ans $=$
$-1.0000+1.4142 \mathrm{i}$
$-1.0000-1.4142 \mathrm{i}$

Even though MATLAB is a numerical package, it has capabilities for handling polynomials. In
MATLAB, a polynomial is represented by a vector containing its coefficients in descending order.

For instance, the following polynomial
$\mathrm{p}(\mathrm{x})=x^{2}-3 \mathrm{x}+5$
is represented by the vector $\mathrm{p}=[1,-3,5]$ and the polynomial
$\mathrm{q}(\mathrm{x})=x^{4}+7 x^{2}-x$
is represented by $\mathrm{q}=[1,0,7,-1,0]$

MATLAB can interpret any vector of length $n+1$ as an nth order polynomial. Thus, if your
polynomial is missing any coefficients, you must enter zeros in the appropriate place(s) in the
vector, as done above.
You can find the value of a polynomial using the polyval command. For example, to find the
value of the polynomial q above at $x=-1$, you type
» polyval(q,-1)
ans $=9$
>> polyval(q,2)
ans $=42$
Finding the roots of a polynomial is as easy as entering the following command.
» roots(q)
ans =
0
$0.0712+2.6486 \mathrm{i}$
0.0712-2.6486i
-0.1424

Note that MATLAB can handle complex numbers as well, with $\mathrm{i}=\mathrm{sqrt}(-1)$. This is reflected
in the four roots above, two of which are complex.
Suppose you want to multiply two polynomials together. Their product is found by taking the
convolution of their coefficients. MATLAB's command conv will do this for you. For
example, if $\mathrm{s}(\mathrm{x})=\mathrm{x}+2$ and $\mathrm{t}(\mathrm{x})=x^{2}+4 \mathrm{x}+8$ then
$\mathrm{z}(\mathrm{x})=\mathrm{s}(\mathrm{x}) \mathrm{t}(\mathrm{x})=x^{3}+6 x^{2}+16 x+16$
In MATLAB, we type
» $\mathrm{s}=\left[\begin{array}{ll}1 & 2\end{array}\right] ;$
»t $=\left[\begin{array}{lll}1 & 4 & 8\end{array}\right]$;
" $\mathrm{z}=\operatorname{conv}(\mathrm{s}, \mathrm{t})$
$\begin{array}{lllll}\mathrm{z}= & 1 & 6 & 16 & 16\end{array}$

MATLAB can obtain derivatives of polynomials very easily. The command polyder
takes as input the coefficient vector of a polynomial and returns the vector of coefficients for its
derivative. For example, with $\mathrm{p}(\mathrm{x})=x^{2}-3 x+5$ as before
» polyder(p)
ans $=2 \quad-3$
For example, with $\mathrm{d}(\mathrm{x})=2 x^{2}-6 x+4$
>> d=[$\left.\begin{array}{lll}2 & -6 & 4\end{array}\right] ;$
>> polyder(d)
ans $=4-6$
>> polyval(d,4)
ans $=12$

