Gauss Elimination Method:

To reduce the augmented matrix to row - echelon form you should follow the following steps:

Step 1: Locate the leftmost column that does not consist entirely of zeros.

Step 2: Interchange the top row with another row, if necessary , to bring
a nonzero entry to the top of the column found in Step 1.

Step 3: If the entry that is now at the top of the column found in Step 1 is b
, multiply the first row by $1 / b$ in order to introduce a leading 1.

Step 4: Add suitable multiples of the top row to the rows below so that all
entries below the leading 1 become zeros.

Step 5: Now cover the top row in the matrix and begin again with Step 1
applied to the submatrix that remains. Continue in this way until the
entire matrix is in row - echelon form.

Example 1: Solve the following system of linear equations by using the Gauss elimination method:
$5 x_{1}+6 x_{2}=7$
$3 x_{1}+4 x_{2}=5$

Solution: The system of linear equations has the following augmented matrix

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
\left(\begin{array}{cc}
5 & 6
\end{array}\right. & 7 \\
3 & 4 & 5
\end{array}\right) \xrightarrow{\frac{1}{5} \mathbf{R}_{1} \rightarrow \mathbf{R}_{1}}\left(\begin{array}{cc|c}
1 & \frac{6}{5} & \frac{7}{5} \\
3 & 4 & 5
\end{array}\right) \xrightarrow{\mathbf{R}_{2}-3 \mathbf{R}_{1} \rightarrow \mathbf{R}_{2}} \\
& \left(\begin{array}{cc|c}
1 & \frac{6}{5} & \frac{7}{5} \\
0 & \frac{2}{5} & \frac{4}{5}
\end{array}\right) \xrightarrow{\frac{5}{2} R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & \frac{6}{5} & \frac{7}{5} \\
0 & 1 & 2
\end{array}\right) \quad \begin{array}{c}
\text { In Row - Echelon } \\
\text { Form }
\end{array}
\end{aligned}
$$

The last matrix is in row - echelon form . The corresponding reduced system is:
$x_{1}+\frac{6}{5} x_{2}=\frac{7}{5} \ldots .1$
$x_{2}=22$
Substitute the value of x_{2} in equation (1), we get
$x_{1}+\frac{12}{5}=\frac{7}{5} \Rightarrow x_{1}=\frac{7}{5}-\frac{12}{5} \Rightarrow x_{1}=-\frac{5}{5} \Rightarrow x_{1}=-1$
Therefore the solution of the system is
$x_{1}=-1$
$x_{2}=2$

Example 2: Solve the following system of linear equations by using the Gauss elimination method:
$4 y+2 z=1$
$2 x+3 y+5 z=0$
$3 x+y+z=11$
Solution: The system of linear equations has the following augmented matrix

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
0 & 4 & 2 & 1 \\
2 & 3 & 5 & 0 \\
3 & 1 & 1 & 11
\end{array}\right) \xrightarrow{\mathbf{R}_{1} \leftrightarrow \mathbf{R}_{2}}\left(\begin{array}{ccc|c}
2 & 3 & 5 & 0 \\
0 & 4 & 2 & 1 \\
3 & 1 & 1 & 11
\end{array}\right) \xrightarrow{\frac{1}{2} \mathbf{R}_{1} \rightarrow \mathbf{R}_{1}} \\
& \left(\begin{array}{ccc|c}
1 & \frac{3}{2} & \frac{5}{2} & 0 \\
0 & 4 & 2 & 1 \\
3 & 1 & 1 & 11
\end{array}\right) \xrightarrow{\mathbf{R}_{3}-3 \mathbf{R}_{1} \rightarrow \mathbf{R}_{3}} \\
& \left(\begin{array}{ccc|c}
1 & \frac{3}{2} & \frac{5}{2} & 0 \\
0 & 4 & 2 & 1 \\
0 & -\frac{7}{2} & -\frac{13}{2} & 11
\end{array}\right) \xrightarrow{\frac{1}{4} \mathbf{R}_{2} \rightarrow \mathbf{R}_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & \frac{3}{2} & \frac{5}{2} & 0 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & -\frac{7}{2} & -\frac{13}{2} & 11
\end{array}\right) \xrightarrow{ } \xrightarrow{\mathbf{R}_{3}+\frac{7}{2} \mathbf{R}_{2} \rightarrow \mathbf{R}_{3}} \\
& \left(\begin{array}{ccc|c}
1 & \frac{3}{2} & \frac{5}{2} & 0 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & -\frac{19}{4} & \frac{95}{8}
\end{array}\right) \xrightarrow{-\frac{4}{19} R_{3} \rightarrow R_{3}} \\
& \left(\begin{array}{ccc|c}
1 & \frac{3}{2} & \frac{5}{2} & 0 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1 & -\frac{5}{2}
\end{array}\right) \xrightarrow{ }
\end{aligned}
$$

The last matrix is in row - echelon form . The corresponding reduced system is:
$x+\frac{3}{2} y+\frac{5}{2} y=0 \quad . \quad . \quad 1$
$y+\frac{1}{2} Z=\frac{1}{4} \quad . \quad .2$
$Z=-\frac{5}{2} \quad . \quad .3$

Substitute the value of in equation (2), we get Z
$y-\frac{5}{4}=\frac{1}{4} \Rightarrow y=\frac{1}{4}+\frac{5}{4} \Rightarrow y=\frac{6}{4} \Rightarrow y=\frac{3}{2}$

Substitute the values of y and z in equation (1), we get
$x+\frac{9}{4}-\frac{25}{4}=0 \Rightarrow x=-\frac{9}{4}+\frac{25}{4} \Rightarrow x=\frac{16}{4} \Rightarrow x=4$
Therefore the solution of the system is

$$
x=4
$$

$y=\frac{3}{2}$
$Z=-\frac{5}{2}$

