# Adrenergic Agonists

Dr. Hasan Falah Alwash

#### **The Adrenergic Neuron**

Adrenergic neurons release norepinephrine as the primary neurotransmitter. These neurons are found in the central nervous system (CNS) and in the sympathetic nervous system, where they serve as links between ganglia and the effector organs.

A. Neurotransmission at adrenergic neuron



### B. Adrenergic receptors (adrenoceptors)

- Two main families of receptors, designated α and β, are classified based on response to the adrenergic agonists epinephrine, norepinephrine, and isoproterenol.
- Both the  $\alpha$  and  $\beta$  receptor types have a number of specific receptor subtypes.
- 1. α-Adrenoceptors
- α-adrenergic, involving constriction of smooth muscle
- a. α1 Receptors These receptors are present on the postsynaptic membrane of the effector organs
- b. α2 Receptors These receptors are located primarily on sympathetic presynaptic nerve endings and control the release of norepinephrine

#### 2. B-Adrenoceptors

\*Stimulation of B1 receptors characteristically causes cardiac stimulation (increase in heart rate and contractility),

\*stimulation of B2 receptors produces vasodilation (in skeletal muscle vascular beds) and smooth muscle relaxation.

\*B3 Receptors are involved in lipolysis (along with B1 ), and also have effects on the detrusor muscle of the bladder



| TISSUE                                                          | RECEPTOR<br>TYPE | ACTION                                                                                                           | OPPOSING<br>ACTIONS                            |
|-----------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Heart<br>• Sinus and AV<br>• Conduction pathway<br>• Myofibrils | β1<br>β1<br>β1   | <ul> <li>Automaticity</li> <li>Conduction velocity, automaticity</li> <li>Contractility, automaticity</li> </ul> | Cholinergic receptors<br>Cholinergic receptors |
| Vascular smooth muscle                                          | β2               | Vasodilation                                                                                                     | α-Adrenergic receptors                         |
| Bronchial smooth muscle                                         | β2               | Bronchodilation                                                                                                  | Cholinergic receptors                          |
| Kidneys                                                         | β1               | 🕇 Renin release                                                                                                  | α <sub>1</sub> -Adrenergic receptors           |
| Liver                                                           | β2, α1           | Glycogenolysis and gluconeogenesis                                                                               | -                                              |
| Adipose tissue                                                  | β1, β3           | † Lipolysis                                                                                                      | α <sub>2</sub> -Adrenergic receptors           |
| Skeletal muscle                                                 | β2               | Increased contractility<br>Potassium uptake; glycogenolysis<br>Dilates arteries to skeletal muscle<br>Tremor     | _                                              |
| Eye-ciliary muscle                                              | β2               | Relaxation                                                                                                       | Cholinergic receptors                          |
| Gl tract                                                        | β2               | ↓ Motility                                                                                                       | Cholinergic receptors                          |
| Gall bladder                                                    | β2               | Relaxation                                                                                                       | Cholinergic receptors                          |
| Urinary bladder detrusor muscle                                 | β2, β3           | Relaxation                                                                                                       | Cholinergic receptors                          |
| Uterus                                                          | β2               | Relaxation                                                                                                       | Oxytocin                                       |

#### **Characteristics of Adrenergic Agonists**

- Mechanism of action of adrenergic agonists
- 1. Direct-acting agonists These drugs act directly on  $\alpha$  or  $\beta$  receptors, producing effects similar to those that occur following stimulation of sympathetic nerves or release of epinephrine
- 2. Indirect-acting agonists These agents may block the reuptake of norepinephrine or cause the release of norepinephrine from the cytoplasmic pools or vesicles of the adrenergic neuron
- 3. Mixed-action agonists Ephedrine and its stereoisomer, pseudoephedrine, both stimulate adrenoceptors directly and enhance release of norepinephrine from the adrenergic neuron



## **Direct-Acting Adrenergic Agonists**

A. Epinephrine

\*Therapeutic uses :

- 1. Bronchospasm
- 2. Anaphylactic shock
- 3. Cardiac arrest
- 4. Local anesthesia :Epinephrine greatly increases the duration of local anesthesia by producing vasoconstriction at the site of injection. Epinephrine also reduces systemic absorption of the local anesthetic
- 5. Intraocular surgery Epinephrine is used in the induction and maintenance of mydriasis during intraocular surgery.
- \*.Adverse effects Epinephrine can produce adverse CNS effects that include anxiety, fear, tension, headache, and tremor. Epinephrine can also induce pulmonary edema

#### B. Norepinephrine

- Therapeutic uses Norepinephrine is used to treat shock (for example, septic shock), because it increases vascular resistance and, therefore, increases blood pressure. It has no other clinically significant uses.
- Adverse effects These are similar to epinephrine. In addition, norepinephrine is a potent vasoconstrictor and may cause blanching and sloughing of skin along an injected vein.

#### C. Isoproterenol

stimulates both B1 - and B2 - adrenergic receptors. Its nonselectivity is a disadvantage and the reason why it is rarely used therapeutically

stimulation of the heart (B1 effect), increasing heart rate, contractility, and cardiac output

. Isoproterenol is also a potent bronchodilator (B2 effect)

|                                                                                                   | DRUG                                                    | RECEPTOR<br>SPECIFICITY                               | THERAPEUTIC USES                                                                                           |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                                                                                   | Epinephrine                                             | $\substack{\alpha_1,  \alpha_2 \\ \beta_1,  \beta_2}$ | Anaphylactic shock<br>Cardiac arrest<br>In local anesthetics to<br>increase duration of action             |
|                                                                                                   | Norepinephrine                                          | α <sub>1</sub> , α <sub>2</sub><br>β <sub>1</sub>     | Treatment of shock                                                                                         |
| C N                                                                                               | Isoproterenol                                           | β1, β2                                                | As a cardiac stimulant                                                                                     |
| CATECHOLAMINES     Rapid onset of action     Brief duration of action     Not administered orally | Dopamine                                                | Dopaminergic<br>α <sub>1,</sub> β <sub>1</sub>        | Treatment of shock<br>Treatment of congestive<br>heart failure<br>Raise blood pressure                     |
| Do not penetrate the blood-<br>brain barrier                                                      | Dobutamine                                              | β1                                                    | Treatment of acute<br>heart failure                                                                        |
|                                                                                                   | Oxymetazoline                                           | α1                                                    | As a nasal decongestant<br>For relief of eye redness                                                       |
|                                                                                                   | Phenylephrine                                           | α1                                                    | As a nasal decongestant<br>Raise blood pressure<br>Treatment of paroxysmal<br>supraventricular tachycardia |
|                                                                                                   | Clonidine                                               | α2                                                    | Treatment of hypertension                                                                                  |
| NONCATECHOL-                                                                                      | Albuterol<br>Metaproterenol<br>Terbutaline              | β2                                                    | Treatment of bronchospasm<br>(short-acting)                                                                |
| AMINES<br>Compared to catecholamines:<br>• Longer duration of action                              | Arformoterol<br>Formoterol<br>Indacaterol<br>Salmeterol | β2                                                    | Treatment of bronchospasm<br>(long-acting)                                                                 |
| All can be administered<br>orally or via inhalation                                               | Amphetamine                                             | α, β, CNS                                             | As a CNS stimulant in treatment<br>of children with ADHD, narcolepsy,<br>and for appetite control          |
|                                                                                                   | Ephedrine<br>Pseudoephedrine                            | α, β, CNS                                             | Raise blood pressure<br>As a nasal decongestant                                                            |