

Experiment (2)

Mirrors

<u>Objective:-</u>

1:-To find the focal length of a concave mirror by two methods:-

A:-Direct method.

B:-Graphical method.

<u>Apparatus:-</u>

Light source, concave mirror, object and screen.

<u>Theory:-</u>

The reflection can occur at an interface between two transparent

materials or at a highly polished surface of an opaque material such as a

metal, in which case the surface is usually called a mirror.

We have three types of mirrors:-

- 1. Concave mirror.
- 2. Convex mirror.
- 3. Plane mirror.

Concave and convex mirror also called spherical mirror.

Spherical mirror is a curved mirror which is a part of a hollow sphere.

1) *Concave mirror* :- is a spherical mirror whose reflecting surface is curved inwards. Rays of light parallel to the principal axis after reflection from a concave mirror meet at a point (converge) on the principal axis.

2) Convex mirror :- is a spherical mirror whose reflecting surface is curved outwards. Rays of light parallel to the principal axis after reflection

from a convex mirror get diverged and appear to come from a point behind the mirror.

Concave mirror

Convex mirror

Figure (1): Types of mirror

<u>Terms used in the study of spherical mirrors(very important)</u> :-

- *i) Center of curvature :-* is the centre of the sphere of which the mirror is a part (C).
- *ii) Radius of curvature: -* is the radius of the sphere of which the mirror is a part (CP).
- *iii) Pole :-* is the centre of the spherical mirror (P).
- *iv) Principal axis :-* is the straight line passing through the centre of curvature and the pole (X-Y).

v) Principal focus :- In a concave mirror, rays of light parallel to the principal axis after reflection meet at a point on the principal axis called principal focus(F).

In a convex mirror, rays of light parallel to the principal axis after reflection get diverged and appear to come from a point on the principal axis behind the mirror called principal focus (F).

vi) *Focal length :-* is the distance between the pole and principal focus

(f). In a spherical mirror the radius of curvature is twice the focal length.

C – centre of curvature	CP – radius of curvature
P – pole	XY – principal axis
F – principal focus	PF – focal length

A spherical reflection has image-forming properties similar to those of a thin lens, you can see a spherical mirror of radius of curvature (r) in Fig. (3).

In this case the focal length of spherical mirror can see in equation (1):

$$f = \frac{r}{2}$$
 (1)

Where:

f: focal length, r: is the radius of curvature of mirror.

But in graphical method one can find the focal length by using equation (2):

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
(2)

Where:

- u: Distance between object and mirror.
- v: Distance between mirror and screen.
- f: Focal length.

Procedure:-

A:-Direct method:

1. To find the focal length place the concave mirror facing the object and screen with object in the same level as shown in Fig.(1):

Figure (3): The setup of Direct Method.

- 2. Adjust the position of mirror until a sharp and screen image coincides with the object.
- 3. Measure the distance between the bottom of the mirror and the object.
- 4. Find the focal length (f) of the mirror by applying equation (1).
- 5. Find the percentage error (p.e) of the focal length.

p.e=
$$((f_{th}-f_{exp})/f_{th}) \times 100\%$$

B:-Graphical method:

- 1. Place the object at a distance u from the concave mirror.
- 2. Fix the concave mirror and move the screen as shown in Fig. (4).

Figure (4): The setup of Graphical Method.

3. Take six reading for u and the corresponding v.

u	V	1/u	1/v	1/f = 1/u + 1/v	f	Image properties for each case

- u: Distance between object and mirror.
- v: Distance between mirror and screen.
- f: Focal length.
- 4. Plot a graph of 1/u in x-axis and 1/v in y-axis to find focal length (f).
- 5. Find the percentage error (p.e) of the focal length.

 $p.e=((f_{th}-f_{exp})/f_{th}) \times 100\%$

Discussion:-

- Q1:-Which method you prefer to find the focal length? And why?
- Q2:-Explain the six cases for producing image formed by concave mirror.
- Q3:-Prove that f=r/2 when u=v=r.