Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

Matrix inverse

Chapter 6

Adjoint of 2×2 Matrix

$$
\operatorname{adj} A=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Determinant of a 2×2 Matrix

$$
\begin{aligned}
\text { If } A & =\left[\begin{array}{ll}
a & b \\
\hline c & \sqrt{d}
\end{array}\right] \text { then } \\
\operatorname{det} A & =a d-b c
\end{aligned}
$$

Inverse of a Matrix
 $A^{-1}=\frac{1}{|A|} \operatorname{Adj} A$

Inverse of 2x2 Matrix

Note: A^{-1} exists only when ad - $\mathrm{bc}=0$

Example 1: Find the inverse of

$$
A=\left[\begin{array}{ll}
2 & -3 \\
4 & -7
\end{array}\right]
$$

Solution:
The following method to find the inverse is only applicable for 2×2 matrices.

1. Interchange leading diagonal elements:
$-7 \rightarrow 2 ; 2 \rightarrow-7$

$$
\left[\begin{array}{cc}
-7 & -3 \\
4 & 2
\end{array}\right]
$$

2. Change signs of the other 2 elements:
$-3 \rightarrow 3 ; 4 \rightarrow-4$

$$
\left[\begin{array}{ll}
-7 & 3 \\
-4 & 2
\end{array}\right]
$$

3. Find the determinant $|A|$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

$$
\left|\begin{array}{ll}
2 & -3 \\
4 & -7
\end{array}\right|=-14+12=-2
$$

4. Multiply result of [2] by $1 /|A|$

$$
\begin{aligned}
A^{-1} & =\frac{1}{|A|}\left[\begin{array}{ll}
-7 & 3 \\
-4 & 2
\end{array}\right] \\
& =\frac{1}{-2}\left[\begin{array}{ll}
-7 & 3 \\
-4 & 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
3.5 & -1.5 \\
2 & -1
\end{array}\right]
\end{aligned}
$$

Finding Inverses 2x2

Example: Find the inverse of A.

$$
\begin{aligned}
A & =\left[\begin{array}{rr}
2 & 4 \\
-4 & -10
\end{array}\right] \\
A^{-1} & =\frac{1}{(2)(-10)-(-4)(4)}\left[\begin{array}{cc}
-10 & -4 \\
4 & 2
\end{array}\right] \\
A^{-1} & =\frac{1}{-4}\left[\begin{array}{cc}
-10 & -4 \\
4 & 2
\end{array}\right]=\left[\begin{array}{cc}
\frac{5}{2} & 1 \\
-1 & -\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Example: Find the inverse of matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 5\end{array}\right]$

1. The determinant of $A=\left|\begin{array}{ll}3 & 2 \\ \mid & 1\end{array}\right|=(3 \times 5)-(2 \times 1)=15-2=13$.
2. The adjoint of a matrix A

$$
\operatorname{adj} A=\left[\begin{array}{cc}
5 & -2 \\
-1 & 3
\end{array}\right]
$$

As we know, the formula of inverse for 2×2 matrix is given by:

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

$$
\begin{aligned}
& A^{-1}=(\operatorname{Adj} A) / \operatorname{det}(A) \\
& A^{-1}=1 / 13\left[\begin{array}{cc}
5 & -2 \\
-1 & 3
\end{array}\right]
\end{aligned}
$$

Therefore $\quad A^{-1}=\left[\begin{array}{cc}5 / 13 & -2 / 13 \\ -1 / 13 & 3 / 13\end{array}\right]$

Example: Find the inverse of

$$
A=\left[\begin{array}{ll}
3 & 10 \\
2 & 7
\end{array}\right]
$$

Solution:

Now, we have to find

$$
\begin{aligned}
& |A|=\left[\begin{array}{lr}
3 & 10 \\
2 & 7
\end{array}\right] \\
& \operatorname{det}(A)=3(7)-2(10)=21-20=1 \neq 0 \\
& \operatorname{Adj} A=\left[\begin{array}{rr}
7 & -10 \\
-2 & 3
\end{array}\right]
\end{aligned}
$$

As we know, the formula of inverse for 2×2 matrix is given by:

$$
A^{-1}=(\operatorname{Adj} A) / \operatorname{det}(A)
$$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

$$
\begin{aligned}
& A^{-1}=1 / 1\left[\begin{array}{cc}
7 & -10 \\
-2 & 3
\end{array}\right] \\
& \text { Therefore } \quad A^{-1}=\left[\begin{array}{cc}
7 & -10 \\
-2 & 3
\end{array}\right]
\end{aligned}
$$

Example 1.14

$$
\text { If } A=\left[\begin{array}{rr}
2 & 4 \\
-3 & 2
\end{array}\right] \text { then, find } A^{-1} .
$$

Solution

$$
\begin{aligned}
A & =\left[\begin{array}{rr}
2 & 4 \\
-3 & 2
\end{array}\right] \\
|A| & =\left|\begin{array}{rr}
2 & 4 \\
-3 & 2
\end{array}\right| \\
& =16 \neq 0
\end{aligned}
$$

Since A is a nonsingular matrix, A^{-1} exists
Now \quad adj $A=\left[\begin{array}{rr}2 & -4 \\ 3 & 2\end{array}\right]$

$$
\begin{aligned}
A^{-1} & =\frac{1}{|A|} \operatorname{adj} A \\
& =\frac{1}{16}\left[\begin{array}{rr}
2 & -4 \\
3 & 2
\end{array}\right]
\end{aligned}
$$

Example 1.15

$$
\text { If } A=\left[\begin{array}{rr}
-2 & 6 \\
3 & -9
\end{array}\right] \text { then, find } A^{-1}
$$

Since det A $=(-2)(-9)-(18)=18-18=0$
Therefore A^{-1} does not exist.

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

Clear Explanation of Matrix Minors, Cofactors, and

 Adjugate Matrix$$
\begin{array}{rlr}
A= & {\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]} & A=\left[\begin{array}{ccc}
e_{4 r}-a_{2}- & -e_{73} \\
a_{21} & a_{2}^{2} & a_{23} \\
a_{31} & a_{12}^{1} & a_{33}
\end{array}\right]
\end{array} \quad . \begin{array}{cc}
A_{12}=\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right] \\
& \text { original matrix } \\
\text { erase row 1 and } & \begin{array}{l}
\text { Form the } \\
\text { submatrix }
\end{array}
\end{array}
$$

Calculate the minor: $M_{12}=\operatorname{det}\left(A_{12}\right)=a_{21} a_{33}-a_{31} a_{23}$

Minors For $\mathbf{2 \times 2}$ Matrix

Let $\mathrm{A}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ be a 2×2 matrix. Then the minor of the element a_{11} is the determinant of matrix formed by omitting $1^{\text {st }}$ row and $1^{\text {st }}$ column of A. i.e. $\mathrm{M}_{11}=\left|\mathrm{a}_{22}\right|$. Similarly, minor of a_{12} is $M_{12}=\left|a_{21}\right|$ and so on.

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

$$
\begin{aligned}
& \mathrm{A}=\left(\begin{array}{ll}
a_{11} & \\
\mid & a_{22}
\end{array}\right) \quad \mathrm{A}=\left(\begin{array}{ll}
\left.\begin{array}{ll}
a_{12} \\
a_{21} & \eta^{2}
\end{array}\right)
\end{array}\right. \\
& \text { minor of } a_{11} \\
& =\left|a_{22}\right| \\
& \text { minor of } a_{12} \\
& =\left|a_{21}\right| \\
& \mathrm{A}=\left(\begin{array}{ll}
& a_{12} \\
a_{21} &
\end{array}\right) \\
& \text { minor of } a_{21} \\
& \mathrm{~A}=\left(\begin{array}{ll}
a_{11} & \\
& a_{22}
\end{array}\right) \\
& =\left|a_{12}\right| \\
& \text { minor of } a_{22} \\
& =\left|a_{11}\right|
\end{aligned}
$$

Thus,
$M_{11}=$ minor of $a_{11}=\left|a_{22}\right|=a_{22}$
$M_{12}=$ minor of $a_{12}=\left|a_{21}\right|=a_{21}$
$M_{21}=$ minor of $a_{21}=\left|a_{12}\right|=a_{12}$
$M_{22}=$ minor of $a_{22}=\left|a_{11}\right|=a_{11}$

Cofactors:

Let A be a square matrix and $a_{i j}$ is the element in $i^{\text {th }}$ row and $j^{\text {th }}$ column of A. Then the cofactor of the element $a_{i j}$ is given by the number $(-1)^{i+j} M_{i j}$, where $M_{i j}$ is the minor of the element $a_{i j}$. The cofactor of element $a_{i j}$ is denoted by $A_{i j}$.

Cofactors For $\mathbf{2 \times 2}$ Matrix

Let $\mathrm{A}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ be a 2×2 matrix. Thus, the cofactors of the elements of A are as follows:

$$
\begin{aligned}
& A_{11}=\text { cofactor of } a_{11}=(-1)^{1+1} M_{11}=\left|a_{22}\right|=a_{22} \\
& A_{12}=\text { cofactor of } a_{12}=(-1)^{1+2} M_{12}=-\left|a_{21}\right|=-a_{21} \\
& A_{21}=\text { cofactor of } a_{21}=(-1)^{2+1} M_{21}=-\left|a_{12}\right|=-a_{12} \\
& A_{22}=\text { cofactor of } a_{22}=(-1)^{2+2} M_{22}=\left|a_{11}\right|=a_{11}
\end{aligned}
$$

Adj of matrix $A=$ Transpose of matrix A
$\operatorname{Adj} A=$ Transpose $\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$
$\operatorname{Adj} A=\left(\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right)$
Inverse of a Matrix
$A^{-1}=\frac{1}{|A|} \operatorname{Adj} A$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

Example 1: Find the minor and cofactor of matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.

Solution: Here,
Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$
Then,
$a_{11}=1, a_{12}=2, a_{21}=3$ and $a_{22}=4$
Thus,
$M_{11}=$ minor of $a_{11}=|4|=4$
$M_{12}=$ minor of $a_{12}=|3|=3$
$M_{21}=$ minor of $a_{21}=|2|=2$
$M_{22}=$ minor of $a_{22}=|1|=1$
And,
$A_{11}=$ cofactor of $a_{11}=(-1)^{1+1} M_{11}=4$
$A_{12}=$ cofactor of $a_{12}=(-1)^{1+2} M_{12}=-3$
$A_{21}=$ cofactor of $a_{21}=(-1)^{2+1} M_{21}=-2$
$A_{22}=$ cofactor of $a_{22}=(-1)^{2+2} M_{22}=1$
Now to find the inverse of the matrix A:
The matrix of cofactors is $=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]=\left[\begin{array}{cc}4 & -3 \\ -2 & 1\end{array}\right]$

Adj of matrix $A=$ Transpose of matrix A

$$
\begin{aligned}
\text { Adj } A= & \text { Transpose }\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \\
& =\text { transpose of }\left[\begin{array}{ll}
4 & -3 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Adj} A & =\left[\begin{array}{ll}
A_{11} & A_{21} \\
A_{12} & A_{22}
\end{array}\right] \\
& =\left[\begin{array}{ll}
4 & -2 \\
-3 & 1
\end{array}\right]
\end{aligned}
$$

Inverse of a Matrix
$A^{-1}=\frac{1}{|A|} \operatorname{Adj} A$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

$$
\begin{aligned}
A^{-1}= & 1 /((4 \times 1)-(-2 \times-3))\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right] \\
& =1 /-2\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
3 / 2 & 1 /-2
\end{array}\right]
\end{aligned}
$$

Minors For 3×3 Matrix

Let $\mathrm{A}=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ be a 3×3 matrix. Then the minor of the element a_{11} is the determinant of the matrix formed by omitting $1^{\text {st }}$ row and $1^{\text {st }}$ column of A. i.e. $\mathrm{M}_{11}=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$. Similarly, minor of a_{12} is $\mathrm{M}_{12}=\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$ and so on.

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

minor of a_{11} minor of a_{12} minor of a_{13}
$=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|=\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|=\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$

minor of a_{21} minor of a_{22} minor of a_{23}
$=\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right|=\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|$
$\left(\begin{array}{lll} & a_{12} & a_{13} \\ & a_{22} & a_{23} \\ a_{31}\end{array}\right)\left(\begin{array}{lll}a_{11} & & a_{13} \\ a_{21} & & a_{23} \\ & a_{32}\end{array}\right)\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ \hline & \\ \hline\end{array}\right)$
minor of a_{31} minor of a_{32} minor of a_{33}
$=\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right|=\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{21} & a_{23}\end{array}\right|=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|$

Prepared by Assist. Prof. Imad Matti

 Cyber Security Engineering Department
Minors for 3 x 3 matrix

$$
\begin{aligned}
& \mathbf{M}_{11}=\text { minor of } a_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|=a_{22} a_{33}-a_{23} a_{32} \\
& M_{12}=\text { minor of } a_{12}=\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|=a_{21} a_{33}-a_{23} a_{31} \\
& \mathbf{M}_{13}=\text { minor of } a_{13}=\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|=a_{21} a_{32}-a_{22} a_{31} \\
& \mathbf{M}_{21}=\text { minor of } a_{21}=\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|=a_{12} a_{33}-a_{13} a_{32} \\
& \mathbf{M}_{22}=\text { minor of } a_{22}=\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|=a_{11} a_{33}-a_{13} a_{31} \\
& \mathbf{M}_{23}=\text { minor of } a_{23}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|=a_{11} a_{32}-a_{12} a_{31} \\
& \mathbf{M}_{31}=\text { minor of } a_{31}=\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|=a_{12} a_{23}-a_{13} a_{22} \\
& M_{32}=\text { minor of } a_{32}=\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|=a_{11} a_{23}-a_{13} a_{21} \\
& M_{33}=\text { minor of } a_{33}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
\end{aligned}
$$

Cofactors For 3×3 Matrix

Let $\mathrm{A}=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ be a 3×3 matrix. Thus,
the cofactors of the elements of A are as follows:
$\mathrm{A}_{11}=$ cofactor of $\mathrm{a}_{11}=(-1)^{1+1} \mathrm{M}_{11}=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$
$\mathrm{A}_{12}=$ cofactor of $\mathrm{a}_{12}=(-1)^{1+2} \mathrm{M}_{12}=-\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$\mathrm{A}_{13}=$ cofactor of $\mathrm{a}_{13}=(-1)^{1+3} \mathrm{M}_{13}=\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$\mathrm{A}_{21}=$ cofactor of $\mathrm{a}_{21}=(-1)^{2+1} \mathrm{M}_{21}=-\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right|$
$\mathrm{A}_{22}=$ cofactor of $\mathrm{a}_{22}=(-1)^{2+2} \mathrm{M}_{22}=\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|$
$\mathrm{A}_{23}=$ cofactor of $\mathrm{a}_{23}=(-1)^{2+3} \mathrm{M}_{23}=-\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|$
$\mathrm{A}_{31}=$ cofactor of $\mathrm{a}_{31}=(-1)^{3+1} \mathrm{M}_{31}=\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right|$
$A_{32}=$ cofactor of $\mathrm{a}_{32}=(-1)^{3+2} \mathrm{M}_{32}=-\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{21} & a_{23}\end{array}\right|$
$\mathrm{A}_{33}=$ cofactor of $\mathrm{a}_{33}=(-1)^{3+3} \mathrm{M}_{33}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

The transpose of a matrix A is denoted by A^{\prime} and is formed by swapping the rows and columns of the matrix A.

The first row of the matrix A becomes the first column of the matrix A^{\prime}, and so on.

Example

If $A=\left(\begin{array}{ccc}3 & 4 & 5 \\ 2 & -1 & 3\end{array}\right)$, then $A^{\prime}=\left(\begin{array}{cc}3 & 2 \\ 4 & -1 \\ 5 & 3\end{array}\right)$.
Note that the matrix A is of order 2×3, whereas the matrix A^{\prime} is of order 3×2.
This is true in general; if the matrix A is of order $m \times n$, then the matrix A^{\prime} will be of order $n \times m$.
[The transpose has the following properties:
(1) $\left(A^{\prime}\right)^{\prime}=A$ for any matrix A.
(2) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$ for any matrices A and B of the same order.
(3) $(k A)^{\prime}=k A^{\prime}$ for any matrix A and scalar k.]

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

Adjoint of a Matrix

$$
\begin{aligned}
\operatorname{adj} \mathbf{A} & =\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)^{\mathrm{T}} \\
& =\left(\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{31} \\
A_{13} & A_{23} & A_{33}
\end{array}\right)^{2}
\end{aligned}
$$

Let $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ be a 3×3 matrix, and
$A_{i j}$ be the cofactor of the element aj_{j}, then adjoint or adjugate of matrix A is defined by,

$$
\begin{aligned}
\text { adj } \boldsymbol{A} & =\text { transpose of }\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right) \\
& =\left(\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{31} \\
A_{13} & A_{23} & A_{33}
\end{array}\right)
\end{aligned}
$$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

$$
\operatorname{adj} A=\left[\begin{array}{lll}
+\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| & -\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right| & +\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| \\
-\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| & +\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right| & -\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right| \\
+\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| & -\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| & +\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
\end{array}\right]
$$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

Example 2: Find the minors and cofactors of matrix $\left(\begin{array}{ccc}1 & 2 & -3 \\ 2 & 0 & 4 \\ 3 & 2 & 1\end{array}\right)$.

Solution: Here,
$\operatorname{Let} A=\left(\begin{array}{ccc}1 & 2 & -3 \\ 2 & 0 & 4 \\ 3 & 2 & 1\end{array}\right)=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$
Then,
$\begin{array}{lll}a_{11}=1 & a_{12}=2 & a_{13}=-3 \\ a_{21}=2 & a_{22}=0 & a_{23}=4 \\ a_{31}=3 & a_{32}=2 & a_{33}=1\end{array}$
Thus,
$M_{11}=$ minor of $a_{11}=\left|\begin{array}{ll}0 & 4 \\ 2 & 1\end{array}\right|=O-8=-8$
$M_{12}=$ minor of $a_{12}=\left|\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right|=2-12=-10$
$M_{13}=$ minor of $a_{13}=\left|\begin{array}{ll}2 & 0 \\ 3 & 2\end{array}\right|=4-0=4$
$M_{21}=$ minor of $a_{21}=\left|\begin{array}{cc}2 & -2 \\ 2 & 1\end{array}\right|=2+4=8$
$M_{22}=$ minor of $a_{22}=\left|\begin{array}{cc}1 & -3 \\ 3 & 1\end{array}\right|=1+9=10$
$M_{23}=$ minor of $a_{23}=\left|\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right|=2-6=-4$
$M_{31}=$ minor of $a_{31}=\left|\begin{array}{cc}2 & -3 \\ 0 & 4\end{array}\right|=\boldsymbol{s}-0=\boldsymbol{s}$
$M_{32}=$ minor of $a_{32}=\left|\begin{array}{cc}1 & -3 \\ 2 & 4\end{array}\right|=4+6=10$
$M_{33}=$ minor of $a_{33}=\left|\begin{array}{ll}1 & 2 \\ 2 & 0\end{array}\right|=0-4=-4$
And,
$A_{11}=$ cofactor of $a_{11}=(-1)^{1+1} M_{11}=-8$
$A_{12}=$ cofactor of $a_{12}=(-1)^{1+2} M_{12}=-(-1 O)=1 O$
$A_{13}=$ cofactor of $a_{13}=(-1)^{1+3} M_{13}=4$
$A_{21}=$ cofactor of $a_{21}=(-1)^{2+1} M_{21}=-8$
$A_{22}=$ cofactor of $a_{22}=(-1)^{2+2} M_{22}=10$
$A_{23}=$ cofactor of $a_{23}=(-1)^{2+3} M_{23}=-(-4)=4$
$A_{31}=$ cofactor of $a_{31}=(-1)^{3+1} M_{31}=8$
$A_{32}=$ cofactor of $a_{32}=(-1)^{3+2} M_{32}=-10$
$A_{33}=$ cofactor of as3 $=(-1)^{3+3} M_{33}=-4$

Matrix of Cofactors $=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right]=\left[\begin{array}{ccc}-8 & -10 & 4 \\ 8 & 10 & -4 \\ 8 & -10 & -4\end{array}\right)$

$$
\operatorname{AdJ}(A)=A^{\top}=\left(\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right)=\left(\begin{array}{ccc}
-8 & 8 & 8 \\
-10 & 10 & -10 \\
4 & -4 & -4
\end{array}\right)
$$

Find $\operatorname{det}(\mathrm{A})$, then apply the following to find the inverse of A

$$
A^{-1}=(1 / \operatorname{det} A) \cdot \operatorname{AdJ}(A)
$$

Example:

$$
\begin{aligned}
& M=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
5 & 6 & 0
\end{array}\right] \\
& \operatorname{det}(M)=1(0-24)-2(0-20) \\
&+3(0-5) \\
&=1
\end{aligned}
$$

Prepared by Assist. Prof. Imad Matti Caber Security Engineering Department

$$
\operatorname{Adj}(M)=\left[\begin{array}{ccc}
-24 & -18 \\
-20 & -15 & 5 \\
-5 & -15 & 4
\end{array}\right] \times\left[\begin{array}{ll}
+ & + \\
\vdots \\
+ & + \\
+
\end{array}\right]
$$

$$
\operatorname{Adj}(M)=\left[\begin{array}{ccc}
-24 & 18 & 5 \\
20 & -15 & -4 \\
-5 & 4 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& M^{\top}=\left[\begin{array}{lll}
1 & 0 & 5 \\
2 & 1 & 6 \\
3 & 4 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{ll}
0 & 5 \\
1 & 6
\end{array}\right|=-5 \quad\left|\begin{array}{ll}
1 & 5 \\
2 & 6
\end{array}\right|=-4 \quad\left|\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right|=1
\end{aligned}
$$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

$$
\begin{aligned}
& \operatorname{Adj}(M)=\left[\begin{array}{ccc}
-24 & 18 & 5 \\
20 & -15 & -4 \\
-5 & 4 & 1
\end{array}\right] ; \quad \operatorname{det}(M)=1 \\
& M^{-1}=\frac{1}{\operatorname{det}(M)} \times \operatorname{Adj}(M)
\end{aligned}
$$

$$
M^{-1}=\left[\begin{array}{ccc}
-24 & 18 & 5 \\
20 & -15 & -4 \\
-5 & 4 & 1
\end{array}\right]
$$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

Exercise 1.2

1. Find the adjoint of the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]$
2. If $A=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$ then verify that $A(\operatorname{adj} A)=|A| \mathrm{I}$ and also find A^{-1}
3. Find the inverse of each of the following matrices
(i) $\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right]$
(ii) $\left[\begin{array}{rr}3 & 1 \\ -1 & 3\end{array}\right]$
(iii) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$
(iv) $\left[\begin{array}{rrr}-3 & -5 & 4 \\ -2 & 3 & -1 \\ 1 & -4 & -6\end{array}\right]$
4. If $A=\left[\begin{array}{rr}2 & 3 \\ 1 & -6\end{array}\right]$ and $B=\left[\begin{array}{rr}-1 & 4 \\ 1 & -2\end{array}\right]$, then verify $\quad \operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)$
5. If $A=\left[\begin{array}{rrr}2 & -2 & 2 \\ 2 & 3 & 0 \\ 9 & 1 & 5\end{array}\right]$ then, show that $(\operatorname{adj} A) A=\mathrm{O}$
6. If $A=\left[\begin{array}{rrr}-1 & 2 & -2 \\ 4 & -3 & 4 \\ 4 & -4 & 5\end{array}\right]$ then, show that the inverse of A is A itself.
7. If $A^{-1}=\left[\begin{array}{rrr}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$ then, find A.

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

8. Show that the matrices $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrr}\frac{4}{5} & -\frac{2}{5} & -\frac{1}{5} \\ \text { other. } & \frac{3}{5} & -\frac{1}{5} \\ -\frac{1}{5} & -\frac{2}{5} & \frac{4}{5}\end{array}\right]$ are inverses of each
9. If $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$ then, verify that $(A B)^{-1}=B^{-1} A^{-1}$
10. Find λ if the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 2 & \lambda & 4 \\ 9 & 7 & 11\end{array}\right]$ has no inverse.
11. If $X=\left[\begin{array}{rrr}8 & -1 & -3 \\ -5 & 1 & 2 \\ 10 & -1 & -4\end{array}\right]$ and $Y=\left[\begin{array}{rrr}2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & p & q\end{array}\right]$ then, find p, q if $Y=X^{-1}$
