Cyber Security Engineering Department

Cyber Security Engineering Department

قسم هندسة تقنيات الامن اللسيبراني
الرياضيات
المرطة الاولى

Prepared by
Assist. Prof. Imad Matti
2023-2024

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

Cyber Security Engineering Department

How to Find the Determinant of a 2×2 Matrix

Suppose we are given a square matrix A with four elements: a, b, c, and d.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

$\operatorname{det} A=\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=$ $\operatorname{det} A=a d-b c$

Examples of How to Find the Determinant of a 2×2 Matrix

Example 1: Find the determinant of the matrix below.

Cyber Security Engineering Department

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \\
& \begin{aligned}
\operatorname{det}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] & =(1)(4)-(2)(3) \\
& =4-6 \\
& =-2
\end{aligned}
\end{aligned}
$$

Example 2: Calculate the determinant of the matrix below.

$$
B=\left[\begin{array}{cc}
-5 & -4 \\
-2 & -3
\end{array}\right]
$$

Prepared by Assist. Prof. Imad Matti
Cyber Security Engineering Department

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ll}
-5 & -4 \\
-2 & -3
\end{array}\right] & =(-5)(-3)-(-4)(-2) \\
& =15-8 \\
& =7
\end{aligned}
$$

Example 3: Evaluate the determinant of the matrix below.

$$
C=\left[\begin{array}{cc}
-1 & -2 \\
6 & 3
\end{array}\right]
$$

Prepared by Assist. Prof. Imad Matti
Cyber Security Engineering Department

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
-1 & -2 \\
6 & 3
\end{array}\right] & =(-1)(3)-(-2)(6) \\
& =(-3)-(-12) \\
& =-3+12 \\
& =9 \checkmark
\end{aligned}
$$

Example 4: Determine the determinant of the matrix below.

$$
D=\left[\begin{array}{cc}
5 & -3 \\
x & y
\end{array}\right]
$$

Cyber Security Engineering Department

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
5 & -3 \\
x & y
\end{array}\right] & =(5)(y)-(-3)(x) \\
& =5 y-(-3 x) \\
& =5 y+3 x
\end{aligned}
$$

Quick Examples of How to Find the Determinants of a 2×2 Matrix

Example 1: Find the determinant of the matrix A below.

$$
\mathrm{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Prepared by Assist. Prof. Imad Matti

Cyber Security Engineering Department

$$
|A|=\left|\begin{array}{ll}
1 \\
x^{2} \\
3 & 4 \\
4
\end{array}\right|=(1)(4)-(2)(3)=4-6=-2
$$

Example 2: Find the determinant of the matrix B below.

$$
\mathbf{B}=\left[\begin{array}{ll}
5 & -1 \\
2 & -3
\end{array}\right]
$$

$$
|\mathrm{B}|=\left|\begin{array}{l}
3-1 \\
2-3
\end{array}\right|=(5)(-3)-(-1)(2)=-15-(-2)=-15+2=-13
$$

Cramer's Rules for Systems of Linear Equations with Two Variables

- Given a linear system
x-column constant column

$$
\begin{gathered}
\downarrow_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2} \\
y \text {-column }
\end{gathered}
$$ coefficient matrix:

$$
\begin{aligned}
& D=\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right] \quad D_{x}=\left[\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right] \\
& D_{y}=\left[\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right]
\end{aligned}
$$

To solve for the variable x :

$$
x=\frac{D_{x}}{D}=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

To solve for the variable y :

$$
y=\frac{D y}{D}=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

Examples of How to Solve
Systems of Linear Equations with Two Variables using Cramer's Rule

Prepared by Assist. Prof. Imad Matti

Cyber Security Engineering Department
Example 1: Solve the system with two variables by Cramer's Rule

$$
\begin{aligned}
& 4 x-3 y=11 \\
& 6 x+5 y=7
\end{aligned}
$$

- For coefficient matrix

$$
\begin{aligned}
D=\left[\begin{array}{cc}
4 & -3 \\
6 & 5
\end{array}\right] \xrightarrow{\text { find its determinant }}|D|=\left|\begin{array}{cc}
4 & -3 \\
6 & 5
\end{array}\right| & =(4)(5)-(-3)(6) \\
& =20-(-18) \\
& =20+18 \\
& =38
\end{aligned}
$$

- For X - matrix

$$
\begin{aligned}
D_{x}=\left[\begin{array}{cc}
11 & -3 \\
7 & 5
\end{array}\right] \xrightarrow{\text { find its determinant }}\left|D_{x}\right|=\left|\begin{array}{cc}
11 & -3 \\
7 & 5
\end{array}\right| & =(11)(5)-(-3)(7) \\
& =55-(-21) \\
& =55+21 \\
& =76
\end{aligned}
$$

- For \mathbf{Y} - matrix

Prepared by Assist. Prof. Imad Matti

Cyber Security Engineering Department

$$
\begin{aligned}
D_{y}=\left[\begin{array}{cc}
4 & 11 \\
6 & 7
\end{array}\right] \xrightarrow[\text { find its determinant }]{ }\left|D_{y}\right|=\left|\begin{array}{cc}
4 & 11 \\
6 & 7
\end{array}\right| & =(4)(7)-(11)(6) \\
& =28-(66) \\
& =-38
\end{aligned}
$$

Once all three determinants are calculated, it's time to solve for the values of \boldsymbol{x} and \boldsymbol{y} using the formula above.

$$
\begin{aligned}
& x=\frac{D_{x}}{D}=\frac{76}{38}=2 \\
& y=\frac{D_{y}}{D}=\frac{-38}{38}=-1
\end{aligned}
$$

I can write the final answer as: $(\boldsymbol{x}, \boldsymbol{y})=(\mathbf{2}, \mathbf{1})$.

Example 2: Solve the system with two variables by Cramer's Rule

Cyber Security Engineering Department

$$
\begin{aligned}
3 x+5 y & =-7 \\
x+4 y & =-14
\end{aligned}
$$

$D=\left[\begin{array}{ll}3 & 5 \\ 1 & 4\end{array}\right] \xrightarrow{\text { find its determinant }}|D|=\left|\begin{array}{ll}3 & 5 \\ 1 & 4\end{array}\right|=(3)(4)-(5)(1)=7$

- For the \mathbf{X} - matrix (replace the x-column by the constant column)
$D_{X}=\left[\begin{array}{cc}-7 & 5 \\ -14 & 4\end{array}\right] \xrightarrow{\text { find its determinant }}\left|D_{X}\right|=\left|\begin{array}{cc}-7 & 5 \\ -14 & 4\end{array}\right|=(-7)(4)-(5)(-14)=42$
- For the \mathbf{Y} - matrix (replace the y-column by the constant column)
$D_{y}=\left[\begin{array}{cc}3 & -7 \\ 1 & -14\end{array}\right] \xrightarrow{\text { find its determinant }}\left|D_{y}\right|=\left|\begin{array}{cc}3 & -7 \\ 1 & -14\end{array}\right|=(3)(-14)-(-7)(1)=-35$

Prepared by Assist. Prof. Imad Matti
Cyber Security Engineering Department

$$
\begin{aligned}
& x=\frac{D_{x}}{D}=\frac{42}{7}=6 \\
& y=\frac{D_{y}}{D}=\frac{-35}{7}=-5
\end{aligned}
$$

Example 3: Solve the system with two variables by Cramer's Rule

$$
\begin{aligned}
x-4 y & =-9 \\
-x+5 y & =11
\end{aligned}
$$

- For coefficient matrix
$D=\left[\begin{array}{cc}1 & -4 \\ -1 & 5\end{array}\right] \xrightarrow{\text { find its determinant }}|D|=\left|\begin{array}{cc}1 & -4 \\ -1 & 5\end{array}\right|=(1)(5)-(-4)(-1)=1$
- For X - matrix (written as uppercase D with subscript x)
$D_{x}=\left[\begin{array}{cc}-9 & -4 \\ 11 & 5\end{array}\right] \xrightarrow{\text { find its determinant }}\left|D_{X}\right|=\left|\begin{array}{cc}-9 & -4 \\ 11 & 5\end{array}\right|=(-9)(5)-(-4)(11)=-1$

Cyber Security Engineering Department

- For Y - matrix (written as uppercase D with subscript y)
$D_{y}=\left[\begin{array}{cc}1 & -9 \\ -1 & 11\end{array}\right] \xrightarrow{\text { find its determinant }}\left|D_{y}\right|=\left|\begin{array}{cc}1 & -9 \\ -1 & 11\end{array}\right|=(1)(11)-(-9)(-1)=2$
calculate x and y as follows.

$$
\begin{aligned}
& x=\frac{D_{x}}{D}=\frac{-1}{1}=-1 \\
& y=\frac{D_{y}}{D}=\frac{2}{1}=2
\end{aligned}
$$

Example 4: Solve by Cramer's Rule the system with two variables

$$
\begin{gathered}
-2 x+3 y=-3 \\
3 x-4 y=5
\end{gathered}
$$

- For coefficient matrix

Cyber Security Engineering Department
$D=\left[\begin{array}{cc}-2 & 3 \\ 3 & -4\end{array}\right] \xrightarrow{\text { find its determinamant }}|D|=\left|\begin{array}{cc}-2 & 3 \\ 3 & -4\end{array}\right|=(-2)(-4)-(3)(3)=-1$

- For \mathbf{X} - matrix
$\left.D_{x}=\left[\begin{array}{cc}-3 & 3 \\ 5 & -4\end{array}\right] \xrightarrow{\text { finditisdeteminarat }}\left|D_{x}\right|=\left|\begin{array}{cc}-3 & 3 \\ 5 & -4\end{array}\right|=(-3)(-4)-(3)(5)=-3\right)$
- For \mathbf{Y} - matrix

$$
\left.D_{y}=\left[\begin{array}{cc}
-2 & -3 \\
3 & 5
\end{array}\right] \xrightarrow{\text { findits deteminarat }} \right\rvert\,\left(D _ { y } \left|=\left|\begin{array}{cc}
-2 & -3 \\
3 & 5
\end{array}\right|=(-2)(5)-(-3)(3)=-1\right.\right.
$$

$$
\begin{aligned}
& x=\frac{D_{x}}{D}=\frac{-3}{-1}=3 \\
& y=\frac{D_{y}}{D}=\frac{-1}{-1}=1
\end{aligned}
$$

Prepared by Assist. Prof. Imad Matti

Cyber Security Engineering Department

Example 5: Solve the system with two variables by Cramer's Rule

$$
\begin{aligned}
5 x+y & =-13 \\
3 x-2 y & =0
\end{aligned}
$$

- For coefficient matrix
$D=\left[\begin{array}{cc}5 & 1 \\ 3 & -2\end{array}\right] \xrightarrow{\text { Find its deteriminanant }}|D|=\left|\begin{array}{cc}5 & 1 \\ 3 & -2\end{array}\right|=(5)(-2)-(1)(3)=-13$
- For X - matrix

$$
D_{x}=\left[\begin{array}{cc}
-13 & 1 \\
0 & -2
\end{array}\right] \xrightarrow{\text { find its determinamat }}\left|D_{x}\right|=\left|\begin{array}{cc}
-13 & 1 \\
0 & -2
\end{array}\right|=(-13)(-2)-(1)(0)=26
$$

Prepared by Assist. Prof. Imad Matti

Cyber Security Engineering Department

> - For \mathbf{Y} - matrix
> $\left.D D_{y}=\left[\begin{array}{cc}5 & -13 \\ 3 & 0\end{array}\right] \xrightarrow{\text { find its determinanant }}\left|D D_{y}\right|=\left|\begin{array}{cc}5 & -13 \\ 3 & 0\end{array}\right|=(5)(0)-(-13)(3)=30\right)$

The final solution to this problem is

$$
\begin{aligned}
& x=\frac{D_{x}}{D}=\frac{26}{-13}=-2 \\
& y=\frac{D_{y}}{D}=\frac{39}{-13}=-3
\end{aligned}
$$

Home Works

Problem 1: Find the determinant of the matrix below.

$$
\left[\begin{array}{cc}
3 & -32 \\
-32 & 3
\end{array}\right]
$$

Problem 2: Find the determinant of the matrix below.

$$
\left[\begin{array}{ll}
0.5 & -4 \\
-6 & 10
\end{array}\right]
$$

Problem 3: The determinant of a 2×2 matrix is 2 . Find the value of \mathcal{X}.

$$
\operatorname{det}\left[\begin{array}{cc}
-2 & x \\
4 & 5
\end{array}\right]=2
$$

Problem 4: The determinant of a 2×2 matrix is -11 . Find the value of y.

$$
\operatorname{det}\left[\begin{array}{cc}
-1 & 2 \\
y & 3
\end{array}\right]=-11
$$

Problem 5: The determinant of a 2×2 matrix is -8 . Find the value of k.

$$
\operatorname{det}\left[\begin{array}{cc}
k & 3 \\
-9 & 7
\end{array}\right]=-8
$$

Problem 6: Solve simultaneous equations 5x$4 y=2$ and $6 x-5 y=1$ by using
Cramer's rule.
$5 x-4 y=2$
$6 x-5 y=1$

Answer: $x=6$ and $y=7$

Prepared 6y Assist. Prof. Imad Matti
 Cyber Security Engineering Department

Problem 7: Use Cramer's rule to solve the equations: $x+2 y=7$ and
$2 x-y=4$.
$x+2 y=7 \ldots \ldots \ldots \ldots$. (i)
$2 x-y=4 \ldots \ldots \ldots$..........ii)

Answer: $x=3$ and $y=2$

For the following exercises, solve the system of linear equations using Cramer's Rule.
8.
$2 x-3 y=-1$
$x+5 y=9$
9.
$5 x-4 y=2$
$-4 x+7 y=6$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

10.

$6 x-3 y=2$
$-8 x+9 y=-1$
11.
$2 x+6 y=12$
$5 x-2 y=13$
12.
$4 x+3 y=23$
$2 \mathrm{x}-\mathrm{y}=-1$
13.

$$
10 x-6 y=2
$$

$-5 x+8 y=-1$
14.
$4 x-3 y=-3$
$2 x+6 y=-4$
15.
$4 x-5 y=7$

$$
\begin{aligned}
& -3 x+9 y=0 \\
& 16 . \\
& 4 x+10 y=180 \\
& -3 x-5 y=-105
\end{aligned}
$$

17.

$8 x-2 y=-3$
$-4 x+6 y=4$
18. Solve the following linear systems with Cramer's Rule
a. $3 x+2 y=3$
$12 x+3 y=1$
b. $15 x+3 y=1$
$2 x+y=2$
C. $5 y=3 x+5$
$-2 y=4 x-2$
d. $32 x+4 y=3$
$64 x+8 y=6$

> Prepared by Assist. Prof. Imad Matti
> Cyber Security Engineering Department
e. $3 x^{2}+4 y^{2}=91$
$6 x^{2}-y^{2}=38$

Solution:

$$
\text { Let } x^{2}=a \text {, and } y^{2}=b
$$

Substitute in the original equations
$3 a+4 b=91$
$6 a-b=38$
Solve for a and b

The answer is: $X=3$, and $\mathrm{y}=4$

