Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

Easiest Way in Finding

 Determinank
§ step-by-step with complete explanation \fallingdotseq
色 finding determinant without calculator $€$

Determinant of 3×3 Matrix

(First Method)
Suppose we are given a square matrix A where,

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

The determinant of matrix \mathbf{A} is calculated as
$\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=a \cdot \operatorname{det}\left[\begin{array}{ll}e & f \\ h & i\end{array}\right]-b \cdot \operatorname{det}\left[\begin{array}{cc}d & f \\ g & i\end{array}\right]+c \cdot \operatorname{det}\left[\begin{array}{ll}d & e \\ g & h\end{array}\right]$

Prepared by Assist. Prof. Imad Matti Cyber Security Engineering Department

$$
\left.\begin{array}{rl}
\left.\left.|A|=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a \cdot\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b \cdot\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c \right\rvert\, \begin{array}{ll}
d & e \\
d & b \\
d & e \\
d & f \\
q & h
\end{array}\right]
\end{array}\right]
$$

Examples of How to Find the Determinant of a 3×3 Matrix

Example 1: Find the determinant of the 3×3 matrix below.

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & -3 & 1 \\
2 & 0 & -1 \\
1 & 4 & 5
\end{array}\right]} \\
{\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{ccc}
2 & -3 & 1 \\
2 & 0 & -1 \\
1 & 4 & 5
\end{array}\right]}
\end{gathered}
$$

Applying the formula,
$\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=a \cdot \operatorname{det}\left[\begin{array}{cc}e & f \\ h & i\end{array}\right]-b \cdot \operatorname{det}\left[\begin{array}{cc}d & f \\ g & i\end{array}\right]+c \cdot \operatorname{det}\left[\begin{array}{ll}d & e \\ g & h\end{array}\right]$

Prepared by Assist. Prof. Imad Matti

Cyber Security Engineering Department

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
2 & -3 & 1 \\
2 & 0 & -1 \\
1 & 4 & 5
\end{array}\right] & =2 \cdot \operatorname{det}\left[\begin{array}{cc}
0 & -1 \\
4 & 5
\end{array}\right]-(-3) \cdot \operatorname{det}\left[\begin{array}{cc}
2 & -1 \\
1 & 5
\end{array}\right]+1 \cdot \operatorname{det}\left[\begin{array}{ll}
2 & 0 \\
1 & 4
\end{array}\right] \\
& =2[0-(-4)]+3[10-(-1)]+1[8-0] \\
& =2(0+4)+3(10+1)+1(8) \\
& =2(4)+3(11)+8 \\
& =8+33+8 \\
& =49
\end{aligned}
$$

Example 2: Evaluate the determinant of the 3×3 matrix below.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 3 & 2 \\
-3 & -1 & -3 \\
2 & 3 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & 2 \\
-3 & -1 & -3 \\
2 & 3 & 1
\end{array}\right]}
\end{aligned}
$$

Prepared by Assist. Prof. Imad Matti
Cyber Security Engineering Department
$\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=a \cdot \operatorname{det}\left[\begin{array}{cc}e & f \\ h & i\end{array}\right]-b \cdot \operatorname{det}\left[\begin{array}{ll}d & f \\ g & i\end{array}\right]+c \cdot \operatorname{det}\left[\begin{array}{ll}d & e \\ g & h\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
1 & 3 & 2 \\
-3 & -1 & -3 \\
2 & 3 & 1
\end{array}\right] & =1 \cdot \operatorname{det}\left[\begin{array}{cc}
-1 & -3 \\
3 & 1
\end{array}\right]-(3) \cdot \operatorname{det}\left[\begin{array}{cc}
-3 & -3 \\
2 & 1
\end{array}\right]+2 \cdot \operatorname{det}\left[\begin{array}{cc}
-3 & -1 \\
2 & 3
\end{array}\right] \\
& =1[-1-(-9)]-3[-3-(-6)]+2[-9-(-2)] \\
& =1(-1+9)-3(-3+6)+2(-9+2) \\
& =1(8)-3(3)+2(-7) \\
& =8-9-14 \\
& =-15
\end{aligned}
$$

Example 3: Solve for the determinant of the 3×3 matrix below.

$$
\left[\begin{array}{ccc}
-5 & 0 & -1 \\
1 & 2 & -1 \\
-3 & 4 & 1
\end{array}\right]
$$

Using the formula, we have...
$\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=a \cdot \operatorname{det}\left[\begin{array}{cc}e & f \\ h & i\end{array}\right]-b \cdot \operatorname{det}\left[\begin{array}{cc}d & f \\ g & i\end{array}\right]+c \cdot \operatorname{det}\left[\begin{array}{ll}d & e \\ g & h\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
-5 & 0 & -1 \\
1 & 2 & -1 \\
-3 & 4 & 1
\end{array}\right] & =-5 \cdot \operatorname{det}\left[\begin{array}{cc}
2 & -1 \\
4 & 1
\end{array}\right]-(0) \cdot \operatorname{det}\left[\begin{array}{cc}
1 & -1 \\
-3 & 1
\end{array}\right]+(-1) \cdot \operatorname{det}\left[\begin{array}{cc}
1 & 2 \\
-3 & 4
\end{array}\right] \\
& =-5[2-(-4)]-0[1-(3)]-1[4-(-6)] \\
& =-5(2+4)-0-1(4+6) \\
& =-5(6)-1(10) \\
& =-30-10 \\
& =-40
\end{aligned}
$$

Example 4: Solve for the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & 0 & 3 \\
1 & 5 & 4
\end{array}\right)
$$

Prepared by Assist. Prof. Imad Matti

Cyber Security Engineering Department

Solution:

$$
=1] \times\left|\begin{array}{ll}
0 & 3 \\
5 & 4
\end{array}\right|-\boxed{-2} \times\left|\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right|+3 \times\left|\begin{array}{cc}
2 & 0 \\
1 & 5
\end{array}\right|
$$

$$
=1 \times(0-15)+2 \times(8-3)+3 \times(10-0)
$$

$$
=1(-15)+2(5)+3(10)
$$

$$
=-15+10+30
$$

$$
=25
$$

Example 5: Calculate the determinant of the three-by-three matrix below.

$$
\left(\begin{array}{ccc}
-5 & -5 & -5 \\
3 & -1 & -2 \\
4 & 2 & 1
\end{array}\right)
$$

Solution:

$$
=-10
$$

$$
\begin{aligned}
& =-5 \times\left|\begin{array}{cc}
-1 & -2 \\
2 & 1
\end{array}\right|--5 \times\left|\begin{array}{cc}
3 & -2 \\
4 & 1
\end{array}\right|+-5 . \times\left|\begin{array}{cc}
3 & -1 \\
4 & 2
\end{array}\right| \\
& =-5(3)+5(11)-5(10)
\end{aligned}
$$

Example 6: Find the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{ccc}
7 & -4 & 2 \\
3 & 1 & -5 \\
2 & 2 & -5
\end{array}\right)
$$

Answer:

$$
\begin{aligned}
& =7 \times\left|\begin{array}{cc}
1 & -5 \\
2 & -5
\end{array}\right|-\boxed{-4} \times\left|\begin{array}{cc}
3 & -5 \\
2 & -5
\end{array}\right|+\boxed{2} \times\left|\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right| \\
& =7(5)+4(-5)+2(4) \\
& =23
\end{aligned}
$$

Example 7: Find the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{ccc}
1 & -6 & -7 \\
1 & -4 & 7 \\
-1 & -3 & -6
\end{array}\right)
$$

Answer:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -6 & -7 \\
1 & -4 & 7 \\
-1 & -3 & -6
\end{array}\right] }=\left[\begin{array}{ccc}
1 & -6 & -7 \\
1 & \boxed{-4} & 7 \\
-1 & -3 & -6
\end{array}\right]-\left[\begin{array}{ccc}
1 & -6 & -7 \\
1 & -4 & 7 \\
\hline-1 & -3 & -6
\end{array}\right]+\left[\begin{array}{ccc}
1 & -6 & -7 \\
\boxed{-1} & -4 & 7 \\
-1 & -3 & -6
\end{array}\right] \\
&=1\left|\times\left|\begin{array}{cc}
-4 & 7 \\
-3 & -6
\end{array}\right|-\boxed{-6} \times\left|\begin{array}{cc}
1 & 7 \\
-1 & -6
\end{array}\right|+\boxed{-7} \times\left|\begin{array}{cc}
1 & -4 \\
-1 & -3
\end{array}\right|\right. \\
&=1(45)+6(1)-7(-7) \\
&=100 \\
& \text { (C) CHILIMATH }
\end{aligned}
$$

Example 8: Find the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{ccc}
-1 & -1 & -1 \\
4 & 5 & -3 \\
-1 & -6 & 3
\end{array}\right)
$$

Answer

$$
\begin{aligned}
{\left[\begin{array}{ccc}
-1 & -1 & -1 \\
4 & 5 & -3 \\
-1 & -6 & 3
\end{array}\right] } & =\left[\begin{array}{ccc}
\boxed{-1} & -1 & -1 \\
4 & \boxed{5} & -3 \\
-1 & \boxed{-6} & 3
\end{array}\right]-\left[\begin{array}{ccc}
-1 & \boxed{-1} & -1 \\
\lceil 4 & 5 & -3 \\
-1 & -6 & 3
\end{array}\right]+\left[\begin{array}{ccc}
-1 & -1 & \boxed{-1} \\
{\left[\begin{array}{cc}
5 & 5 \\
-3 \\
-1 & -6 \\
\hline
\end{array}\right]} \\
& =\boxed{-1} \times\left|\begin{array}{cc}
5 & -3 \\
-6 & 3
\end{array}\right|-\boxed{-1} \times\left|\begin{array}{cc}
4 & -3 \\
-1 & 3
\end{array}\right|+\boxed{-1} \times\left|\begin{array}{cc}
4 & 5 \\
-1 & -6
\end{array}\right| \\
& =-1(-3)+1(9)-1(-19) \\
& =31 & \text { (C) CHILIMATH }
\end{array}\right.
\end{aligned}
$$

Example 9: Calculate the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{ccc}
7 & 5 & 7 \\
6 & -5 & -5 \\
6 & 2 & 3
\end{array}\right)
$$

Answer:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
7 & 5 & 7 \\
6 & -5 & -5 \\
6 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
\boxed{7} & 5 & 7 \\
6 & \boxed{-5} & \overline{-5} \\
6 & \lfloor 2 & 3
\end{array}\right]-\left[\begin{array}{ccc}
7 & 5 & 7 \\
\boxed{6} & -5 & \overline{-5} \\
\lfloor 6 & 2 & 3
\end{array}\right]+\left[\begin{array}{ccc}
7 & 5 & 7 \\
\boxed{6} & \overline{-5} & -5 \\
\lfloor 6 & 2\rfloor & 3
\end{array}\right]} \\
& =7 \times\left|\begin{array}{cc}
-5 & -5 \\
2 & 3
\end{array}\right|-5 \times\left|\begin{array}{cc}
6 & -5 \\
6 & 3
\end{array}\right|+7 \times\left|\begin{array}{cc}
6 & -5 \\
6 & 2
\end{array}\right| \\
& =7(-5)-5(48)+7(42) \\
& =19
\end{aligned}
$$

Example 10: Calculate the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{ccc}
4 & -6 & 4 \\
-4 & -7 & -5 \\
2 & 7 & 3
\end{array}\right)
$$

Answer:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
4 & -6 & 4 \\
-4 & -7 & -5 \\
2 & 7 & 3
\end{array}\right] }=\left[\begin{array}{ccc}
4 & -6 & 4 \\
-4 & \boxed{-7} & -5 \\
2 & \lfloor & 3
\end{array}\right]-\left[\begin{array}{ccc}
4 & \boxed{-6} & 4 \\
\boxed{-4} & -7 & -5 \\
\hline 2 & 7 & 3
\end{array}\right]+\left[\begin{array}{ccc}
4 & -6 & 4 \\
\boxed{-4} & -7 & -5 \\
2 & 7 & 3
\end{array}\right] \\
&=4 \times\left|\begin{array}{cc}
-7 & -5 \\
7 & 3
\end{array}\right|-\boxed{-6} \times\left|\begin{array}{cc}
-4 & -5 \\
2 & 3
\end{array}\right|+\boxed{4} \times\left|\begin{array}{cc}
-4 & -7 \\
2 & 7
\end{array}\right| \\
&=4(14)+6(-2)+4(-14) \\
&=-12 \\
& \text { C. CHILIMATH }
\end{aligned}
$$

Example 11: Calculate the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{lll}
-1 & -3 & 4 \\
-1 & 2 & 6 \\
-3 & -7 & 2
\end{array}\right)
$$

Answer:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
-1 & -3 & 4 \\
-1 & 2 & 6 \\
-3 & -7 & 2
\end{array}\right] } & =\left[\begin{array}{ccc}
\boxed{-1} & -3 & 4 \\
-1 & \lceil 2 & 6 \\
-3 & \boxed{-7} & 2
\end{array}\right]-\left[\begin{array}{ccc}
-1 & \boxed{-3} & 4 \\
\boxed{-1} & 2 & 6 \\
\hline-3 & -7 & 2
\end{array}\right]+\left[\begin{array}{ccc}
-1 & -3 & 4 \\
\boxed{-1} & 2 & 6 \\
-3 & -7 & 2
\end{array}\right] \\
& =\boxed{-1} \times\left|\begin{array}{cc}
2 & 6 \\
-7 & 2
\end{array}\right|-\boxed{-3} \times\left|\begin{array}{cc}
-1 & 6 \\
-3 & 2
\end{array}\right|+\boxed{4} \times\left|\begin{array}{cc}
-1 & 2 \\
-3 & -7
\end{array}\right| \\
& =-1(46)+3(16)+4(13) \\
& =54
\end{aligned}
$$

Example 12: Determine the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{rrr}
2 & 7 & 5 \\
1 & 2 & 5 \\
0 & 0 & -4
\end{array}\right)
$$

Answer:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 7 & 5 \\
1 & 2 & 5 \\
0 & 0 & -4
\end{array}\right] }=\left[\begin{array}{ccc}
\boxed{2} & 7 & 5 \\
1 & \boxed{2} & 5 \\
0 & \boxed{0} & -4
\end{array}\right]-\left[\begin{array}{ccc}
2 & \boxed{7} & 5 \\
\sqrt{1} & 2 & 5 \\
0 & 0 & -4
\end{array}\right]+\left[\begin{array}{ccc}
2 & 7 & 5 \\
\sqrt{1} & 2 & 5 \\
0 & 0 & -4
\end{array}\right] \\
&=\boxed{2} \times\left|\begin{array}{cc}
2 & 5 \\
0 & -4
\end{array}\right|-\boxed{7} \times\left|\begin{array}{cc}
1 & 5 \\
0 & -4
\end{array}\right|+\boxed{5} \times\left|\begin{array}{cc}
1 & 2 \\
0 & 0
\end{array}\right| \\
&=2(-8)-7(-4)+5(0) \\
&=12 \\
& \text { (C) CHILIMATH }
\end{aligned}
$$

Example 13: Determine the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{ccc}
1 & -2 & 2 \\
-5 & -1 & 5 \\
4 & -1 & 0
\end{array}\right)
$$

Answer:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & -2 & 2 \\
-5 & -1 & 5 \\
4 & -1 & 0
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & -2 & 2 \\
-5 & \boxed{-1} & 5 \\
4 & \boxed{-1} & 0
\end{array}\right]-\left[\begin{array}{ccc}
1 & -2 & 2 \\
\boxed{-5} & -1 & 5 \\
4 & -1 & 0
\end{array}\right]+\left[\begin{array}{ccc}
1 & -2 & 2 \\
\boxed{-5} & -1 & 5 \\
4 & -1 & 0
\end{array}\right] \\
& =\left|1 \times\left|\begin{array}{cc}
-1 & 5 \\
-1 & 0
\end{array}\right|-\boxed{-2} \times\left|\begin{array}{cc}
-5 & 5 \\
4 & 0
\end{array}\right|+\boxed{2} \times\left|\begin{array}{cc}
-5 & -1 \\
4 & -1
\end{array}\right|\right. \\
& =1(5)+2(-20)+2(9) \\
& =-17
\end{aligned}
$$

© CHILIMATH

Example 14: Compute the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{ccc}
-5 & 2 & -3 \\
-2 & -1 & -5 \\
5 & -5 & -3
\end{array}\right)
$$

Answer

$$
\begin{aligned}
{\left[\begin{array}{ccc}
-5 & 2 & -3 \\
-2 & -1 & -5 \\
5 & -5 & -3
\end{array}\right] } & =\left[\begin{array}{ccc}
\boxed{-5} & 2 & -3 \\
-2 & \boxed{-1} & -5 \\
5 & \boxed{-5} & -3
\end{array}\right]-\left[\begin{array}{ccc}
-5 & 2 & -3 \\
\boxed{-2} & -1 & -5 \\
5 & -5 & -3
\end{array}\right]+\left[\begin{array}{ccc}
-5 & 2 & -3 \\
\boxed{-2} & -1 & -5 \\
\boxed{5} & -5 & -3
\end{array}\right] \\
& =\boxed{-5} \times\left|\begin{array}{cc}
-1 & -5 \\
-5 & -3
\end{array}\right|-\left\lfloor2 \left|\times\left|\begin{array}{cc}
-2 & -5 \\
5 & -3
\end{array}\right|+\boxed{-3} \times\left|\begin{array}{cc}
-2 & -1 \\
5 & -5
\end{array}\right|\right.\right. \\
& =-5(-22)-2(31)-3(15) \\
& =3
\end{aligned}
$$

Example 15: Compute the determinant of the 3×3 matrix below.

$$
\left(\begin{array}{ccc}
-4 & 1 & 2 \\
1 & -3 & 2 \\
-4 & 4 & 0
\end{array}\right)
$$

Answer:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
-4 & 1 & 2 \\
1 & -3 & 2 \\
-4 & 4 & 0
\end{array}\right] } & =\left[\begin{array}{ccc}
\boxed{-4} & 1 & 2 \\
1 & \boxed{-3} & 2 \\
-4 & \boxed{4} & 0
\end{array}\right]-\left[\begin{array}{ccc}
-4 & 1 & 2 \\
\boxed{1} & -3 & 2 \\
\hline-4 & 4 & 0
\end{array}\right]+\left[\begin{array}{ccc}
-4 & 1 & 2 \\
\boxed{1} & \frac{-3}{} & 2 \\
-4 & 4 & 0
\end{array}\right] \\
& =\boxed{-4} \times\left|\begin{array}{cc}
-3 & 2 \\
4 & 0
\end{array}\right|-\left\lfloor 1 \times\left|\begin{array}{cc}
1 & 2 \\
-4 & 0
\end{array}\right|+\boxed{2} \times\left|\begin{array}{cc}
1 & -3 \\
-4 & 4
\end{array}\right|\right. \\
& =-4(-8)-1(8)+2(-8) \\
& =8
\end{aligned}
$$

©СㄷLIMATH

Determinant of 3×3 Matrix

(Second Method)

To find the determinant of a 3×3 matrix, copy the first two columns of the matrix to the right of the original matrix. Next, multiply the numbers on the three downward diagonals, and add these products together. Multiply the numbers on the upward diagonals, and add these products together. Then subtract the sum of the products of the upward diagonals from the sum of the product of the downward diagonals (subtract the second number from the first number):

$$
A=\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right)
$$

$$
\left\lvert\, \begin{array}{lll|ll}
a_{1} & b_{1} & c_{1} & a_{1} & b_{1} \\
a_{2} & b_{2} & c_{2} & a_{2} & b_{2} \\
a_{3} & b_{3} & c_{3} & a_{3} & b_{3}
\end{array}\right.
$$

$\operatorname{det} A=\left(a_{1} b_{2} c_{3}+b_{1} c_{2} a_{3}+c_{1} a_{2} b_{3}\right)-\left(a_{3} b_{2} c_{1}+b_{3} c_{2} a_{1}+c_{3} a_{2} b_{1}\right)$

Example: Find the determinant of:

$$
\left[\begin{array}{rrr}
1 & 2 & 0 \\
4 & -1 & 5 \\
2 & 0 & 10
\end{array}\right]
$$

Step 1:

$$
\left[\begin{array}{rrrrr}
1 & 2 & 0 & 1 & 2 \\
4 & -1 & 5 \\
2 & 0 & 10
\end{array}\right] \begin{array}{r}
4 \\
-1 \\
2
\end{array}
$$

Step 2:

Step 3:

Step 4:
$10-80=-70$.
$\operatorname{Det} A=-70$.

For example: Find the determinant of $|A|=$ $\left|\begin{array}{lll}1 & 2 & -3 \\ 2 & 0 & 4 \\ 3 & 2 & 1\end{array}\right|$ by the rule of Sarrus.

Prepared by Assist. Prof. Imad Matti

Cyber Security Engineering Department

$\therefore\left|\begin{array}{ccc}2 & -1 & 2 \\ 5 & 9 & 5 \\ 9 & 0 & -6\end{array}\right|=-108+-45+0-(162+0+30)=-345$

Find the solution to the given 3×3 system using Cramer's Rule.

$$
\begin{gathered}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3} \\
D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|, D_{x}=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|, D_{y}=\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right|, D_{z}=\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right| \\
\mathrm{x}=\mathrm{D}_{\mathrm{x}} / \mathrm{D}, \quad \mathrm{y}=\mathrm{D}_{\mathrm{y}} / \mathrm{D}, \quad \mathrm{z}=\mathrm{D}_{\mathbf{z}} / \mathrm{D} \quad \mathrm{D} \neq \mathbf{0}
\end{gathered}
$$

Prepared by Assist. Prof. Imad Matt

Caber Security Engineering Department

Cramer's Rule

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} \\
& a_{3} x+b_{3} y+c_{3} z=d_{3} \\
& \left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \\
& \text { If } D \neq 0 \text { then } \\
& x=\frac{\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|}{D} \quad y=\frac{\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right|}{D} \quad z=\frac{\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|}{D}
\end{aligned}
$$

Solve the linear equations with 3 variables using Cramer's rule.

$$
\begin{aligned}
& x+y=2 \\
& x-y+z=4 \\
& x+y-z=6
\end{aligned}
$$

Solution:

By Cramer's rule for 3 variables, $\mathbf{x}=\mathbf{D}_{\mathbf{x}} / \mathbf{D}, \mathbf{y}=\mathrm{D}_{\mathrm{y}} / \mathbf{D}, \mathbf{z}=\mathrm{D}_{\mathbf{z}} / \mathbf{D}$, where $\mathrm{D}, \mathrm{D}_{\mathrm{x}}$, D_{y} and D_{z} are determinants.
$\mathrm{D}=\left|\begin{array}{rrr}1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right|$
$D=1(1-1)-1(-1-1)+0$
$D=0+2+0$
D = 2
$D_{x}=\left|\begin{array}{ccc}2 & 1 & 0 \\ 4 & -1 & 1 \\ 6 & 1 & -1\end{array}\right|$
$D_{x}=2(1-1)-1(-4-6)+0$
$D_{x}=0-1(-10)+0$
$D_{x}=10$

$$
\begin{aligned}
& D_{y}=\left|\begin{array}{ccc}
1 & 2 & 0 \\
1 & 4 & 1 \\
1 & 6 & -1
\end{array}\right| \\
& D_{y}=1(-4-6)-2(-1-1)+0 \\
& D_{y}=1(-10)+4+0 \\
& D_{y}=-6
\end{aligned}
$$

$$
D_{z}=\left|\begin{array}{ccc}
1 & 1 & 2 \\
1 & -1 & 4 \\
1 & 1 & 6
\end{array}\right|
$$

$$
D_{z}=1(-6-4)-1(6-4)+2(1+1)
$$

$$
\left.D_{z}=-10\right)-2+4
$$

$$
D_{z}=-8
$$

$$
x=D_{x} / D=10 / 2=5
$$

$$
y=D_{y} / D=-6 / 2=-3
$$

$$
z=D_{z} / D=-8 / 2=-4
$$

Homework. 1

Solve the following 3×3 system of equations by using Cramer Rule:

Q1: $\quad x+y-z=6$

$$
\begin{array}{r}
3 x-2 y+z=-5 \\
x+3 y-2 z=14
\end{array}
$$

The solution is $x=1, y=3$, and $z=-2$
Q2: $\quad 2 x+y-z=3$

$$
x+y+z=1
$$

$$
x-2 y-3 z=4
$$

The solution is $x=2, y=-1$, and $z=0$
Q3: $\quad x+y+z=6$

$$
\begin{gathered}
2 x+3 y-z=5 \\
6 x-2 y-3 z=-7
\end{gathered}
$$

The solution is $x=1, y=2$, and $z=3$

Q4: $\quad X+Y=2$

$$
\begin{aligned}
& X-Y+Z=4 \\
& X+Y-Z=6
\end{aligned}
$$

The solution is $x=5, y=-3$, and $z=-4$
Q5: $\quad 3 x-4 y+8 z=34$

$$
4 x+y-2 z=1
$$

$$
-6 x-13 y+20 z=61
$$

The solution is: $x=2, y=-1$, and $z=3$

Q6: $\quad X+4 Y+3 Z=2$

$$
\begin{gathered}
2 X-6 Y+6 Z=-3 \\
5 X-2 Y+3 Z=-5
\end{gathered}
$$

The solution is $x=-1, y=1 / 2$, and $z=1 / 3$

