Prepared by Assist. Prof. Imad Matti Cyber security Engineering Department

Cramer's Rules for Systems of Linear

 Equations with Three Variables$$
\begin{aligned}
& \text { x-column } \quad{ }^{\text {z-column }} \\
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} \\
& a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{aligned} \prod_{\text {y-column constant-column }}
$$

Coefficient matrix:

$$
D=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] D_{X}=\left[\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right]
$$

Prepared by Assist. Prof. Imad Matti Caber security Engineering Department

$$
D_{y}=\left[\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right]
$$

$$
D_{z}=\left[\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right]
$$

Z - matrix

How to Solve Systems of Linear Equations with Three Variables using Cramer's Rule
Example 1: Solve the system with three variables by Cramer's Rule.

$$
\left\{\begin{array}{c}
x+2 y+3 z=-5 \\
3 x+y-3 z=4 \\
-3 x+4 y+7 z=-7
\end{array}\right.
$$

From the given system of linear equations, I will construct the four matrices that will be used to solve for the values of \mathbf{X}, \mathbf{y}, and \mathbf{Z}.

Prepared by Assist. Prof. Imad Matti
Cyber security Engineering Department
$D=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 1 & -3 \\ -3 & 4 & 7\end{array}\right] \quad D_{x}=\left[\begin{array}{ccc}-5 & 2 & 3 \\ 4 & 1 & -3 \\ -7 & 4 & 7\end{array}\right]$

$$
D_{y}=\left[\begin{array}{ccc}
1 & -5 & 3 \\
3 & 4 & -3 \\
-3 & -7 & 7
\end{array}\right]
$$

$$
D_{z}=\left[\begin{array}{ccc}
1 & 2 & -5 \\
3 & 1 & 4 \\
-3 & 4 & -7
\end{array}\right]
$$

Next, I will solve for the determinant of each matrix.
The values of the determinants are listed below.
Determinants of each matrix:

$$
\begin{aligned}
|D| & =40 \\
\left|D_{x}\right| & =-40 \\
\left|D_{y}\right| & =40 \\
\left|D_{z}\right| & =-80
\end{aligned}
$$

The final answers or solutions are easily computed or calculated once all the required determinants are found.

Solved values for x, y, and z.

$$
\begin{aligned}
& x=\frac{\| D_{x} \mid}{|D|}=\frac{-40}{40}=-1 \\
& y=\frac{\left|D_{y}\right|}{|D|}=\frac{40}{40}=1 \\
& z=\frac{\| D_{z} \mid}{|D|}=\frac{-80}{40}=-2
\end{aligned}
$$

The final answer written in point notation is : $(x, y, z)=(-1,1,-2)$.

Example 2: Solve the system with three variables by using Cramer's Rule.

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
-2 x-y-3 z=3 \\
2 x-3 y+z=-13 \\
2 x
\end{array}-3 z=-11\right.
\end{array}\right\}\left[\begin{array}{ccc}
-2 & -1 & -3 \\
2 & -3 & 1 \\
2 & 0 & -3
\end{array}\right] D_{x}=\left[\begin{array}{ccc}
3 & -1 & -3 \\
-13 & -3 & 1 \\
-11 & 0 & -3
\end{array}\right] .
$$

$$
D_{y}=\left[\begin{array}{ccc}
-2 & 3 & -3 \\
2 & -13 & 1 \\
2 & -11 & -3
\end{array}\right] \quad D_{z}=\left[\begin{array}{ccc}
-2 & -1 & 3 \\
2 & -3 & -13 \\
2 & 0 & -11
\end{array}\right]
$$

After solving the determinant of each matrix, I have them all written down.
Determinants of each matrix:

$$
\begin{aligned}
|D| & =-44 \\
\left|D_{x}\right| & =176 \\
\left|D_{y}\right| & =-88 \\
\left|D_{z}\right| & =-44
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{\left|D_{x}\right|}{|D|}=\frac{176}{-44}=-4 \\
& y=\frac{\left|D_{y}\right|}{|D|}=\frac{-88}{-44}=2 \\
& z=\frac{\left|D_{z}\right|}{|D|}=\frac{-44}{-44}=1
\end{aligned}
$$

Our final answer is : $(x, y, z)=(-4,2,1)$.

Example 3: Solve the system with three variables by Cramer's Rule.

$$
\left\{\begin{aligned}
-y-2 z & =-8 \\
x+3 z & =2 \\
7 x+y+z & =0
\end{aligned}\right.
$$

- coefficient matrix

$$
\begin{array}{ll}
D=\left[\begin{array}{ccc}
0 & -1 & -2 \\
1 & 0 & 3 \\
7 & 1 & 1
\end{array}\right] & D_{x}=\left[\begin{array}{ccc}
-8 & -1 & -2 \\
2 & 0 & 3 \\
0 & 1 & 1
\end{array}\right] \\
\mathbf{x} \text { - matrix } \\
D_{y}=\left[\begin{array}{ccc}
0 & -8 & -2 \\
1 & 2 & 3 \\
7 & 0 & 1
\end{array}\right] & D_{z}=\left[\begin{array}{ccc}
0 & -1 & -8 \\
1 & 0 & 2 \\
7 & 1 & 0
\end{array}\right]
\end{array}
$$

Solving for their determinants, I got the following values.
Determinants of each matrix:

$$
\begin{aligned}
|D| & =-22 \\
\left|D_{x}\right| & =22 \\
\left|D_{y}\right| & =-132 \\
\left|D_{z}\right| & =-22
\end{aligned}
$$

This leads us to easily set up and calculate the final answers.
Solved values for \mathbf{X}, \mathbf{y}, and \mathbf{Z}.

$$
\begin{aligned}
& x=\frac{\left|D_{x}\right|}{|D|}=\frac{22}{-22}=-1 \\
& y=\frac{\left|D_{y}\right|}{|D|}=\frac{-132}{-22}=6 \\
& z=\frac{\left|D_{z}\right|}{|D|}=\frac{-22}{-22}=1
\end{aligned}
$$

The final answer is: $(x, y, z)=(-1,6,1)$.

Example 4: Solve the system with three variables by Cramer's Rule

$$
\left\{\begin{array}{r}
-2 x+y+z=4 \\
-4 x+2 y-z=8 \\
-6 x-3 y+z=0
\end{array}\right.
$$

Write down the four special matrices.

- coefficient matrix

$$
\begin{aligned}
& D= {\left[\begin{array}{ccc}
-2 & 1 & 1 \\
-4 & 2 & -1 \\
-6 & -3 & 1
\end{array}\right] } \\
& D_{x}= {\left[\begin{array}{ccc}
4 & 1 & 1 \\
8 & 2 & -1 \\
0 & -3 & 1
\end{array}\right] } \\
& x-\text { matrix }
\end{aligned}
$$

$$
\begin{gathered}
D_{y}=\left[\begin{array}{ccc}
-2 & 4 & 1 \\
-4 & 8 & -1 \\
-6 & 0 & 1
\end{array}\right] \\
y \text {-matrix } \\
D_{z}=\left[\begin{array}{ccc}
-2 & 1 & 4 \\
-4 & 2 & 8 \\
-6 & -3 & 0
\end{array}\right] \\
z-\text { matrix }
\end{gathered}
$$

Evaluate each matrix to find its determinant.

$$
\begin{aligned}
|D| & =36 \\
\left|D_{x}\right| & =-36 \\
\left|D_{y}\right| & =72 \\
\left|D_{z}\right| & =0
\end{aligned}
$$

Use the Cramer's Rule to get the following solutions.
Solved values for x, y, and z.

$$
\begin{aligned}
& x=\frac{\left|D_{x}\right|}{|D|}=\frac{-36}{36}=-1 \\
& y=\frac{\left|D_{y}\right|}{|D|}=\frac{72}{36}=2 \\
& z=\frac{\left|D_{z}\right|}{|D|}=\frac{0}{36}=0
\end{aligned}
$$

The final answer is $(x, y, z)=(-1,2,0)$.
Example 5: Solve the system with three variables by Cramer's Rule

$$
\left\{\begin{aligned}
x-8 y+z & =4 \\
-x+2 y+z & =2 \\
x-y+2 z & =-1
\end{aligned}\right.
$$

Construct the four special matrices.

- coefficient matrix

$$
\begin{aligned}
& D=\left[\begin{array}{ccc}
1 & -8 & 1 \\
-1 & 2 & 1 \\
1 & -1 & 2
\end{array}\right] \\
& D_{x}=\left[\begin{array}{ccc}
4 & -8 & 1 \\
2 & 2 & 1 \\
-1 & -1 & 2
\end{array}\right] \\
& D_{y}=\left[\begin{array}{ccc}
1 & 4 & 1 \\
-1 & 2 & 1 \\
1 & -1 & 2
\end{array}\right]
\end{aligned}
$$

$$
D_{z}=\left[\begin{array}{ccc}
1 & -8 & 4 \\
-1 & 2 & 2 \\
1 & -1 & -1
\end{array}\right]
$$

Find the determinant of each square matrix.

Determinants of each matrix

$$
\begin{aligned}
|D| & =-20 \\
\left|D_{x}\right| & =60 \\
\left|D_{y}\right| & =16 \\
\left|D_{z}\right| & =-12
\end{aligned}
$$

Solved values for x, y, and z.

$$
\begin{aligned}
& x=\frac{\left|D_{x}\right|}{|D|}=\frac{60}{-20}=-3 \\
& y=\frac{\left|D_{y}\right|}{|D|}=\frac{16}{-20}=\frac{-4}{5} \\
& z=\frac{\left|D_{z}\right|}{|D|}=\frac{-12}{-20}=\frac{3}{5}
\end{aligned}
$$

The final answer in point form is $(-3,-45,35)$.

Prepared by Assist. Prof. Imad Matti
Caber security Engineering Department

Summary

Find the solution to the given 3×3 system using Cramer's Rule.

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} \\
& a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{aligned}
$$

$$
D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|, D_{x}=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|, D_{y}=\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right|, D_{z}=\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|
$$

$$
X=D_{x} / D, y=D_{y} / D, z=D_{z} / D \quad D \neq 0
$$

Prepared by Assist. Prof. Imad Matti Cyber security Engineering Department
Cramer's Rule

$$
\begin{aligned}
& \begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array} \quad \text { Let } \left.D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \right\rvert\, \\
& \begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array} \quad \text { Let } \left.D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \right\rvert\, \\
& \begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array} \quad \text { Let } \left.D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \right\rvert\, \\
& \begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array} \quad \text { Let } \left.D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \right\rvert\, \\
& \text { If } D \neq 0 \text { then }
\end{aligned}
$$

Home Work. 2

Problem 1: Solve the given system of equations using Cramer's Rule.

$$
\begin{array}{r}
x+3 y+3 z=5 \\
3 x+y-3 z=4 \\
-3 x+4 y+7 z=-7
\end{array}
$$

The final answer can be given in point notation: $(x, y, z)=(-1,1,2)$.

Problem 2:

Solve the given system of equations using Cramer's Rule.

$$
\begin{aligned}
-y-2 z & =-8 \\
x+3 z & =2 \\
7 x+y+z & =0
\end{aligned}
$$

The answer is: $(x, y, z)=(-1,6,1)$

Problem 3:

Solve the given system of equations using Cramer's Rule.

$$
\begin{aligned}
-2 x-5 y+4 z & =21 \\
-5 x-5 y+z & =21 \\
-4 y-4 z & =8
\end{aligned}
$$

The answer is: $(x, y, z)=(-1,-3,1)$

Problem 4:

Solve the given system of equations using Cramer's Rule.

$$
\begin{aligned}
5 x+y-4 z & =-4 \\
-3 y-6 z & =-21 \\
-x-y-z & =-6
\end{aligned}
$$

The answer is: $(x, y, z)=(5,-5,6)$

Problem 5:

Solve the given system of equations using Cramer's Rule.

$$
\begin{aligned}
4 x-4 y+2 z & =-14 \\
4 x+2 y & =14 \\
-3 y+z & =-10
\end{aligned}
$$

No solution

