Z2020-20=Z21

Parallel Programming

In computing, a parallel programming model _
computer architecture, with which it is convenient to express algorithms and their
compositionin programs: The value of a programming model can be judged on

its generality: how well a range of different problems can be expressed for a variety of

different architectures. and its performance: how efficiently the compiled programs can

execute.

Classification of parallel programming model

Classifications of parallel programming models can be divided broadly into two areas:

Process interaction

Process interaction relates to the mechanisms by which parallel processes are able to
communicate with each other. The most common forms of interaction are shared memory

and message passing, but interaction can also be implicit (invisible to the programmer).

Shared memory

e Shared memory is an efficient means of passing databetween processes.

¢ In ashared-memory model,

e parallel processes share a global address space that they read and write to
asynchronously.

¢ Asynchronous concurrent access can lead to

Message passing

In a message-passing model, parallel processes EXchange data thiough passing
HEs8ages 10 0tie another. These communications can be

e asynchronous, where a message can be sent before the receiver is ready.

¢ orsynchronous, where the receiver mustbeready.

The Communicating sequential processes (CSP) formalisation of message passing

uses synchronous communication channels to connect processes, and led to important

languages such as Occam, Limbo and Go.

In contrast, the actor model uses asynchronous message passing and has been

emploved in the design of languages such as D, Scalaand SALSA.

Implicit interaction

In an implicit model, AOPFOCESSMICIACHONISVISIBISIO e Progiammcr andinsicad

Two examples ofimplicit parallelism are with domain-specific languages where the

concurrency within high-level operations is prescribed, and with functional programming

languages because the absence of side-effects allows non-dependent functions to be

executed in parallel.

Thank You

AL-MAMOON UNIVERSITY COLLEGE

Computer Science Department

Parallel Programming

Lecture §

20202021

1. Basic Concepts

Single core processor: is a microprocessor with a single core in one chip, running a single thread in one
time.

Multi-core processor: is a microprocessor with multiple cores in one chip, running multiple threads in one
time.

. . . Parallel Computing: is a type of computation to
proceed many calculations in simultaneously. As a

D [:] - - - - - . - ibseg?tf;:l’ used to divide larger problems in smaller

PP PP PP P _ gerp .

] D once, which can then be solved at the same time (see
figl).

Onene

Figure 1 Parallel Computing example

Process(Computing): is the instance of a running program that is being executéd“by one or many threads.
Each process is an independent entity to which system resources such as CPU time, memary, etc. are
allocated and each process is executed in a separate address space. :

When a program is loaded into the memory and it Heap }
becomes a process, it can be divided into four sections — stack,
heap, text and data. The following image shows a simplified i
layout of a process inside main memory (see fig2).

Text

Figure 2 Process layout inside memory.

Component & Description
1. Stack The process Stack contains the temporary data such as method/function parameters, return
address and local variables.
2. Heap Thisis dynamically allocated memory to a process during its run time.

3. Text This includes the current activity represented by the value of Program Counter and the
contents of the processor's registers.
4. Data This section contains the global and static variables.

Program: is a piece of code which may be a single line or millions of lines.

#include <stdio.h>

int main () {
printf ("Hello, World! \n");
return 0;

Process Life Cycle

When a process executes, it passes through different states. In general, a process can have one of the
following five states at a time (see fig 3).

Figure 3 Process life cycle

Thread: is the smallest sequence of programmed instructions that can be managed independently by a
scheduler. Multiple threads can exist within one process (see fig 4).

[code ” data ” files | I code ” data “ files I

1 1
| stack I |regislers I |regtsters| |reg|slers|
| stack || stack || stack |

thread —» ; ; ; ;4—— thread

single-threaded process multithreaded process
Figure 4 Process with single and multithread example

Task: is a unit of execution or a unit of work, that occurs during the first step of executing parallel
program.

Afirst step in designing the parallel
program is to break the problem into separate
| ||

"chunks or pieces" of work that can be distributed
task 1 task 2 task 3
Figure 5 Tasks description

to multiple tasks.

Task granularity: The size of tasks (e.g., in terms of the number of instructions) and there is typically the
possibility of choosing tasks of different sizes.

]

ool] |5

Scheduling: is the assignment of tasks to processes or threads with a fixed order to execute the tasks.
Scheduling can be done by hand in the source code or by the programming environment, at compile time
or dynamically at runtime.

Mapping: is the assignment of processes or threads onto the physical units, processors or cores, and it is
usually done by the runtime system but can sometimes be influenced by the programmer.

Note: To execute any parallel programs correctly need to consider the synchronization and coordination
of threads and processes.

Parallel execution time: is the time elapsed between the start of the application on the first processor and

the end of the execution of the application on all processors. computation time on processors or cores and
synchronization time for data exchange are important aspects in parallel computing.

The parallel execution time should be smaller than the sequential execution time on one processor so
that designing a parallel program is worth the effort.

Parallel program must have —>parallel execution time < sequential execution time
Less than

Idle times: is an unproductive time where the processor cannot do anything useful, only wait for
an event to happen.

Load balancing: is good synchronization and mapping strategy to the parallel program with
small idle time. This occurs when the work load is assigned equally to processors or cores.

2. Types of Parallel Programming
Parallel processing can be subdivided into two groups as explained below.

a) Task based: In this type every processor in the system will execute different jobs or tasks in a

parallel way. For example, in MS Word, doing two tasks (printing and Spell Checking) at the same
time considered as separated tasks in different processors.

b) Data based: In this type, each processor in the system will perform different data sets in parallel
way. For example, in image processing, convert the image color to grayscale by dividing the image
into upper and lower halves and each half converted by different processors.

3. Shared memory or distributed memory models

In the shared memory; in case of desktop or laptop computers; there is only one memory unit and

multiprocessing units, all processors in this model have the right access to the memory unit which is shared
between them.

In the distributed memory; as in the computer cluster; every multiple processing unit have their own
memory unit to store the data. In this model, the information is passed between these units.

The computer clusters; are separate units of computers that are connected through the network, working
as a single system.

Thus, the multiprocessors can be divided into two shared-memory model as main categories- UMA
(Uniform Memory Access), NUMA (Non-uniform Memory Access) as illustrated in Fig 6.

I Network I

Cache Cache Cache Cache
Cache Cache Cache Cache

a) UMA b) NUMA

Figure 6 Shared (UMA) and distributed (NUMA) memory models

Each processor needs its own private cache to be fed quickly.

4. Flynn's Taxonomy

First proposed by Michael Flynn in 1966, Flynn's taxonomy is a specific classification of parallel computer

architectures that are based on the number of synchronized instruction (single or multiple) and data streams
(single or multiple) available in the architecture.

The four categories in Flynn's taxonomy are the following:

a) Single instruction, Single data (SISD): a single
instruction, operating on a single data stream. All the - «—> PE
instructions and data to be processed have to be stored g]g
In primary memory. i

weaqg vogaIngsu|

b) Multiple instruction, Single data (MISD): multiple
instructions operate on one data stream. Each processing
unit operates on the data independently via separate
instruction stream.

MISD structure is only of theoretical interest since no : :

practical system has been constructed using this M ——>Ccu —>

organization. S

c) Single instruction, Multiple data (SIMD): a single i Mamgy
instruction operates on multiple different data streams. Py
All processors receive the same instruction from the '
control unit but operate on different items of data. The & &
shared memory unit must contain multiple modules so el - !

wrong ewg

that it can communicate with all the processors 1 1 !
- M Memory Moduse:
simultaneously. ‘I‘ ';' 1

d) Multiple instruction, Multiple data (MIMD): M M M
multiple autonomous processors simultaneously I I !
executing different instructions on different data. In £E 3 £E
MIMD, each processor has a separate program and an CI” CIU CIU

instruction stream is generated from each program. ,
Interconnection Network

Where, CU = Control Unit, PE = Processing Element,
M = Memory

The motivations of using parallel processing can be summarized as follows:

= Faster execution time, parallel processing allowing the execution of applications in a shorter time.

= Higher computational power, to solve larger problems in a short point of time.

= Higher throughput, to solve many problems or large problems in short time.

= Working on different tasks simultaneously, you can do many things simultaneously by using
multiple computing resources.

S. Effectiveness of Parallel processing

Throughout the book. we will be using certain measures to compare the effectiveness of various parallel
algorithms or architectures for solving desired problems. The following definitions and notations are
applicable.

p Number of processors
W(p) Total number of unit operations performed by the p processors: this is often referred to as
P computational work or energy
T(p) Execution time with p processors: clearly, T(1) = W(1) and T(p) < W(p)
T(1)
S(p) Speed —up = T_(p)
E(p) . (1)
Efficiency = ——=
R() W
Redundancy = W)
Up) " W(p)
Utilization = ———
PT(p)
o) . (1)
- Quality = ————~—
pT*(P)Wekp)

Example: Finding the sum of 16 numbers can be
represented by the binary-tree computation graph
of Figure 4 with T(1) = W{l) = 15. Assume unit-
time additions and ignore all else. Withp =8
processors, we have

W(s) =15 T(8) =4
E(8) =15/(8 -4) = 47%
S(8) = 15/4 = 3.75

R(8) =15/15=1

0(8) =1.76

Figure 7 Computation graph for finding the sum of 16 manbers

Essentially, the 8 processors perform all of the additions at the same tree level in each time unit,

beginning with the leaf nodes and ending at the root. The relatively low efficiency is the result of limited
parallelism near the root of the tree.

Speedup

Speedup is the expected performance benefit from running an application on a multicore versus a single-
core machine. When speedup is measured, single-core machine performance is the baseline. For example,
assume that the duration of an application on a single-core machine is six hours. You might expect that an
application running on a single-core machine would run twice as quickly on a dual-core machine, and that
a quad core machine would run the application four times as fast. But that’s not exactly correct.

Here are some of the limitations to linear speedup (full parallelization) of parallel code:
Serial code

e Overhead from parallelization
e Synchromzation
e Sequential mput/output

Predicting speedup is important in designing, benchmarking, and testing your parallel application. Fortunately,
there are formulas for calculating speedup. One such formulas are Amdahl’s Law and Gustafson’s Law.

% Amdahl’s Law
It calculates the speedup of parallel code based on three variables:

e Duration of running the application on a single-core machine
e The percentage of the application that is parallel
e The number of processor cores

1
P
1-pG)
P : is the percent of the application that runs in parallel.
N : 1s the number of processor cores.

Speedup =

Example: suppose you have an application that is 75 percent parallel and runs on a machine with three
processor cores. The first iteration to calculate Amdahl’s Law is shown below. In the formula, P is .75
(the parallel portion) and N is 3 (the number of cores).

1
2

Speedup = =
1-075%)

The application will run twice as fast on a three processor-core machine.

< Gustafson’s Law

You may have an application that’s split consistently into a sequential and parallel portion. Amdahl’s Law
maintains these proportions as additional processors are added. The serial and parallel portions each remain
half of the program. But in the real world, as computing power increases.

Amdahl’s Law does not account for the overhead required to schedule, manage, and execute parallel tasks.
Gustafson’s Law takes both of these additional factors into account. Here is the formula to calculate speedup
by using Gustafson’s Law.

S+N(1-5)

Speedup = St(-9) L

In the above formula. S is the percentage of the serial code in the application, N is the number of
processor cores, and 0, is the overhead from parallelization.

Also speedup can be computed using the bellow
equation

Speedup=s+pxN

s--> time spend in executing serial
p--> time spend in executing parallel
N--> no of processor

also s+p=1

Computer Science Department

4 th Class

2020-20=21

Program
e A computer program is a collection of instructions that performs a

specific task when executed by a computer.
e A computer program is usually written by a computer programmer in a
programming language.

Process
e In computing, a process is the instance of a computer program that is being
executed by one or many threads.
e |t contains the program code and its activity.
e Depending on the operating system (OS), a process may be made up of
multiple threads of execution that execute instructions concurrently.

Motherboard CPU

Primary Secondary
Storage Storage
-RAM -DVD
-ROM -Hard Disk
-EPROM Gache -USB Flash Drive

Task

A task is a set of program instructions that are loaded in memory. Short answer:
A thread is a scheduling concept, it's what the CPU actually 'runs' (you don't run
a process). A process needs at least one thread that the CPU/OS executes

Thread

Time

Thread

. lhreadzsa single sequential flow of

control within a program.

A Program (L

WA
!M ot Boowes, Uiwervady of Kaduiad

Difference between Process and Thread

The essential difference between a thread and a process is the work that each
one is used to accomplish.

Threads are being used for small & compact tasks, whereas processes are
being used for more heavy tasks.

One major difference between a thread and a process is that threads within the
same process consume the same address space, whereas different processes
do not. This allows threads to read from and write to the common shared and
data structures and variables, and also increases ease of communication
between threads.

Communication between two or more processes — also known as Inter-Process
Communication i.e. IPC — is quite difficult and uses intensive resources.

Difference between Task and Thread
Tasks are very much similar to threads, the difference is that they generally do
not interact directly with OS.
Like a Thread Pool, a task does not create its own OS thread. A task may or
may not have more than one thread internally.
If you want to know when to use Task and when to use Thread: Task is simpler
to use and more efficient that creating your own Threads. But sometimes, you
need more control than what is offered by Task. In those cases, it makes more
sense to use Thread directly.
The bottom line is that Task is almost always the best option; it provides a much
more powerful APl and avoids wasting OS threads.
The only reasons to explicitly create your own Threads in modern code are
setting per-thread options, or maintaining a persistent thread that needs to
maintain its own identity.

Process vs. Thread

J Process

+ address space, program code, global variables, heap, OS
resources: files, I/0 devices

3 Thread

+ is a single sequential execution stream withina process

3 A process is a multithread where

+ Each thread has its own (other threads can access but
shouldn't) registers, program counter (PC) , stack, stack
pointer (SP)

+ All threads shares process resources
+ Threads executes concurrently
+ Each thread can block, fork, terminate, synchronize

e The term Parallelism refers to techniques to make programs faster by
performing several computations at the same time.

e This requires hardware with multiple processing units. ... To this end, it can
even be an advantage to do the same computation twice on different units

Multiprocessing, in computing, a mode of operation in which two or more processors
in a computer simultaneously process two or more different portions of the same
program

Multiprocessors Systems

Processor1 }Prog’:e’ssbrzv] ,Processorn \
Cache Cache Cache

Memory I/0 Device

Multithread

In computer architecture, multithreading is the ability of a central processing unit
(CPU) (or a single core in a multi-core processor) to provide multiple threads of
execution concurrently, supported by the operating system. This approach differs
from multiprocessing.

Multitasking

Multitasking, the running of two or more programs (sets of instructions) in
one computer at the same time. Multitasking is used to keep all of

a computer's resources at work as much of the time as possible.

Word 4 Web s
E-mail Antivirus
Processor . . Browser |

PROCESS
PROCESS

h /' ‘\ IV
~ ’ ~
\\\ /” H \\\ -
. -~ Operating System . .~
\\“’I’ \\“/

|
s v
Concurrency

In computer science, concurrency is the ability of different parts or units of a program,
algorithm, or problem to be executed out-of-order or in partial order, without affecting
the final outcome

Concurrency & Parallelism

Concurrent Concurrent [also] Parallel

CPU
Y

CpPU1 CPU2

Task1 or Thread1

Task? or Thread1

£\ J

Parallel Computing

Parallel computing is a type of computation where many calculations or the execution
of processes are carried out simultaneously. Large problems can often be divided into
smaller ones, which can then be solved at the same time.

Task1
OR
Thread1

N SN

CPU Core
e A coreis a small CPU or processor built into a CPU or CPU socket.
¢ |t can independently perform or process all computational tasks.
e From this perspective, we can consider a core to be a smaller CPU or a
smaller processor within a big processor

Intel Core

What's a Core Processor?

Intel Core processors first came to the desktop in mid-2006, replacing the
Pentium line that had previously comprised Intel's high-end processors.
The Core “i” names are primarily “high level” categorizations that help
differentiate processors within a given generation.

A specific Core “I” name doesn’t mean the processor has a certain number of
cores, nor does it guarantee features, like Hyper-Threading, which allows the

CPU to process instructions faster.

Feature specifics can change between generations. As technology advances, it
becomes cheaper to create higher-performing, low-end parts.

It also means that features once found in parts like a Core i3 can disappear
from the class entirely.

Therefore, the differences between Core i3, Core i5, and Core i7 designations
matter most within its respective generation.

For example, a seventh-generation “Kaby Lake” Core i7, and a third-generation
“Ivy Bridge” Core i7 might run at similar speeds with similar core counts.

Intel Core i3 processors are where the Core lineup starts for each generation.
Those earlier dual-core Core i3’s also tended to have four threads, also known
as Hyper-Threading.

Intel has elected not to double the thread count in recent Core i3 generations;
instead, it’s building CPUs with four cores and four threads.

Core i3 processors also have lower cache sizes (onboard memory).

They handle less RAM than other Core processors and have varying clock
speeds. At this writing, the ninth-generation, Core i3 desktop processors have a
top clock speed of 4.6 GHz

Core i5: The Lower Mid-Range, a step up from Core i3 is the Core i5. This is
often where bargain-hunting PC gamers look for solid deals on processors. An
i5 typically lacks Hyper-Threading, but it has more cores (currently, six, rather
than four) than Core i3. The i5 parts also generally have higher clock speeds, a
larger cache, and can handle more memory. The integrated graphics are also a
bit better. You see new Core i5 processors with Hyper-Threading on laptops,
but not desktops.

https://www.howtogeek.com/194756/cpu-basics-multiple-cpus-cores-and-hyper-threading-explained/

e Corei7: As of 2017, Core i7 CPUs had Hyper-Threading on desktops, but the
more recent generations do not. These processors have higher core counts (up
to eight in the ninth generation) than the i5’s, a larger cache, and a bump in
graphics performance, but they have the same memory capacity as the Core
i5’s (although, that could change in the future).

e Corei9: An Intel-based gaming PC. The Core 19 is at the top of the Intel Core
pack. This is where you find many top-performing processors, like the Core i9-
9900K—a current favorite for gaming.

e Atthe Core 19 level in the current ninth-generation CPUs, we see eight cores,
16 threads, a larger cache than the Core i5 processors, faster clock speeds (up
to 5 GHz for boost), and another bump in graphics performance. However, Core
19 CPUs still have the same maximum memory capacity as the Core i5.

e Core X: The Ultimate Intel also has a “prosumer” range of fancier, high-end
desktop (HEDT) processors for enthusiasts, gamers, content creators, or
anyone else who needs that level of performance.

In October 2019, Intel announced new Core X parts that range from 10 to 18 cores
(Core i9s max out at eight). They include Hyper-Threading, and high boost clocks,
although, not necessarily higher than Core i9 CPUs. They also have a higher number
of PCle lanes and can handle more RAM, and they have a much higher TDP than the
other Core parts.

Which Should You Buy?

Core designations refer to relative improvements within a specific generation of
processors. As the Core number increases, so do the capabilities of the processors,
including higher core counts, faster clock speeds, more cache, and the ability to
handle more RAM. At Core X, you also usually get more PCle lanes.

If you're a gamer, look for Core i7 and higher. You can definitely game with a newer
Core i5, but you'll get more future-proofing with a Core i7 and up. Content creators
should look at Core i7 and Core i9 CPUs, as you’ll want those sweet threads.

For everyday tasks, like web browsing, spreadsheets, and word processing, a Core i3
will get the job done.

Something to keep in mind while you shop, though, is not all Intel Core CPUs have
integrated graphics. These processors end with an “F” to designate that they come
without a GPU, such as the Core i3-9350KF, i5-9600KF, and i9-9900KF.

\)

https://www.howtogeek.com/438898/what-is-tdp-for-cpus-and-gpus/

Flynn's Taxonomy

Flynn's taxonomy is a classification of computer architectures, proposed by Michael
J. Flynn in 1966. The classification system has stuck, and it has been used as a tool
in design of modern processors and their functionalities. Since the rise

of multiprocessing central processing units (CPUs), a multiprogramming context has
evolved as an extension of the classification system.

Single instruction stream, single data stream (SISD)

¢ A sequential computer which exploits no parallelism in either the instruction or
data streams.

¢ Single control unit (CU) fetches single instruction stream (IS) from memory.

e The CU then generates appropriate control signals to direct single processing
element (PE) to operate on single data stream (DS) i.e., one operation at a
time.

e Examples of SISD architecture are the traditional uniprocessor machines like
older personal computers (PCs; by 2010, many PCs had multiple cores)
and mainframe computers.

Single instruction stream, multiple data streams (SIMD)

e A single instruction operates on multiple different data streams. Instructions can
be executed sequentially,

e such as by pipelining, or in parallel by multiple functional units.

e Single instruction, multiple threads (SIMT) is an execution model used
in parallel computing where single instruction, multiple data (SIMD) is combined
with multithreading. This is not a distinct classification in Flynn's taxonomy,

R

https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Michael_J._Flynn
https://en.wikipedia.org/wiki/Michael_J._Flynn
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Multiprogramming
https://en.wikipedia.org/wiki/Uniprocessor
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Single_instruction,_multiple_threads
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading

where it would be a subset of SIMD. Nvidia commonly uses the term in its
marketing materials and technical documents where it argues for the novelty of
Nvidia architecture

Multiple instruction streams, single data stream (MISD)
e Multiple instructions operate on one data stream. This is an uncommon
architecture which is generally used for fault tolerance.

e Heterogeneous systems operate on the same data stream and must agree on
the result.

e Examples include the Space Shuttle flight control computer.

Multiple instruction streams, multiple data streams (MIMD)

e Multiple autonomous processors simultaneously executing different instructions
on different data.

e MIMD architectures include multi-core superscalar processors, and distributed
systems, using either one shared memory space or a distributed memory
space.

Diagram comparing classifications

These four architectures are shown below visually. Each processing unit (PU) is
shown for a uni-core or multi-core computer:

SISD Instruction Pool

Data Pool

https://en.wikipedia.org/wiki/Space_Shuttle
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Distributed_system
https://en.wikipedia.org/wiki/Distributed_system
https://en.wikipedia.org/wiki/File:SISD.svg

MISD Instruction Pool

o L PU JL PU |«
a
SIMD Instruction Pool

———|PU|—

————|PU|

Data Pool

————|PU|—

————|PU|-

MIMD Instruction Pool

—|PU|-{ |PU|—

—|PU|+ =|PU|

Data Pool

—|PU| |PU|+

—|PU|- |PU|-

Further divisions

As of 2006, all the top 10 and most of the TOP500 supercomputers are based on a
MIMD architecture.

Some further divide the MIMD category into the two categories below, and even
further subdivisions are sometimes considered.

VY

https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/File:MISD.svg
https://en.wikipedia.org/wiki/File:SIMD.svg
https://en.wikipedia.org/wiki/File:MIMD.svg

Single Program, Multiple Data Streams (SPMD)

« Multiple autonomous processors simultaneously executing the same program
(but at independent points, rather than in the lockstep that SIMD imposes) on
different data.

. Also termed single process, multiple data- the use of this terminology for SPMD
is technically incorrect, as SPMD is a parallel execution model and assumes
multiple cooperating processors executing a program.

« SPMD is the most common style of parallel programming.

. The SPMD model and the term was proposed by Frederica Darema of the RP3
team.

Multiple programs, multiple data streams (MPMD)

. Multiple autonomous processors simultaneously operating at least 2
independent programs.

« Typically such systems pick one node to be the "host" ("the explicit host/node
programming model") or "manager" (the "Manager/Worker" strategy), which
runs one program that farms out data to all the other nodes which all run a
second program.

. Those other nodes then return their results directly to the manager. An example
of this would be the Sony PlayStation 3 game console, with its SPU/PPU
processor.

OpenMP
« Application Program Interface (API),
. Jointly defined by a group of major computer hardware and software vendors.
« OpenMP provides a portable, scalable model for developers of shared memory
parallel applications.
. The API supports C/C++ and Fortran on a wide variety of architectures

https://en.wikipedia.org/wiki/Lockstep_(computing)
https://en.wikipedia.org/wiki/Cell_(microprocessor)
https://en.wikipedia.org/wiki/Cell_(microprocessor)

Compu ter Science DD epartment

<3 »d Class

4

2020-20=21

Parallel Programming Paradigm
» Phase parallel

» Divide and conquer
+ Pipeline

+ Process farm

+ Work pool

+» Remark :

The parallel program consists of number of super
steps, and each super step has two phases :
computation phase and interaction phase

Phase Parallel Model

C

C

'

v !

Synchronous Interaction

!

C

;

-
'

Synchronous Interaction

v

v v

The phase-parallel model offers a
paradigm that 15 widely used in
parallel programming.

The parallel program consists of a
number of supersteps, and each has
two phases.

In a computation phase, multiple
processes each perform an

independent computation C.

In the subsequent interaction phase,
the processes perform one or more
synchronous interaction operations,
such as a barner or a blocking

communication.

Then next superstep is executed.

Phase Parallel Model

A special case of Phase-Parallel Paradigm 1s
Synchronous Iteration Paradigm where the
supersteps are a sequence of iterations in a

loop.

Consider the example of computing x=1(X)
where x 1s an n-dimensional vector.

Synchronous Iteration Paradigm

parfor (1=0; 1<n; 1++) //create n processes
//each executing a for loop
{
for (j=0: j<N; j*++)
{
x[1] = f(x);
barrier:
;
y

Synchronous Iteration Paradigm

For n =9 we have

Barrier Synchronisation

Asynchronous Iteration Paradigm

parfor (1=0; 1<n; 1++)
{
for (j=0; j<N: j++)
x[1] = £i(x):
y

It allows a process to proceed to the next iteration,
without waiting for the remaming processes to catch

up.

Asynchronous Iteration Paradigm

The above code could be indeterminate, because
when a process 1s computing x[1] in the jth
iteration, the x[1-1] value used could be
computed by another process 1n iteration j-1.

However, under certain conditions, an
asynchronous iteration algorithm will converge
to the correct results and 1s faster than the
synchronous iteration algorithm.

Divide and Conquer

A parent process divides iis
workload into several smaller
pieces and assigns them to a
number of child processes.

The child processes then
compute their workload in
parallel and the results are

merged by the parent.

The dividing and the merging
procedures are done recursively.

This paradigm is very natural
for computations such as quck
sort. Its disadvantage 1s the
difficulty in achieving good load
balance.

Data stream

|Slave

Process Farm

This paradigm is also known as the
master-slave paradigm.

A master process executes the
essentially sequential part of the
parallel program and spawns a
number of slave processes to execute

the parallel workload.

When a slave finishes its workload, it

informs the master which assigns a
new workload to the slave.

This is a very simple paradigm, where
the coordination is done by the
master.

Work pool

Worlk
Pool

=]l

Work Pool

This paradigm 1s often used in a shared

variable model.

A pool of works 1s realized in a global data

structure.

A number of processes are created.
Initially, there may be just one piece of
work in the pool.

Any free process fetches a piece of work
from the pool and executes it, producing
zero, one, or more new work pieces put

into the pool.

The parallel program ends when the work
pool becomes empty.

This paradigm facilitates load balancing, as
the workload i1s dynamiecally allocated to

free processes.

Parallel Programming Models

Implicit parallelism

e If the programmer does not explicitly specify
parallelism, but let the compiler and the run-time
support system automatically exploit it.

Explicit Parallelism

e It means that parallelism 1s explicitly specified in
the source code by the programming using special
language constructs, complex directives, or library

20
cells.

Implicit Parallel Programming Models

Implicit Parallelism: Parallelizing Compilers

» Automatic parallelization of sequential programs
* Dependency Analysis
* Data dependency
* Control dependency

Remark
Users belief is influenced by the cumently
disappointing performance of automatic tools
(Implicit parallelism) and partly by a theoretloal
results obtained

Implicit Parallel Programming Models

Implicit Parallelism

+ Bernstein’s Theorem

* [t 1s difficult to decide whether two. operations
in an i1mperative sequential program can be
executed in parallel

An implication of this theorem is that there 1s no
automatic technique, compiler time or runtime
that can exploit all parallelism in a sequential
program N

Implicit Parallel Programming Models

To overcome this theoretical limitation, two solutions
have been suggested

* The first solution 1s to abolish the imperative
style altogether, and to use a programming
language which makes parallelism recognition
casier

* The second solution 1s to wuse explicit
parallelism ez

Explicit Parallel Programming Models

Three dominant parallel programming
models are :

» Data-parallel model

+ Message-passing model

+» Shared-variable model

Explicit Parallel Programming Models

Main

Features

Data-Parallel

Message-
Passing

Shared-Variable

Control flow
(threading)

Single

Multiple

Multiple

Synchrony

Loosely synchronous

Asynchronous

Asynchronous

Address space

Single

Multiple

Multiple

Interaction

Implicit

Explicit

Explicit

Data
allocation

Implicit or
semiexplicit

Explicit

Implicit or
semiexplicit

Explicit Parallel Programming Models

Message — Passing

» Message passing has the following characteristics :

» Multithreading
>Asynchron0us parallelism (IMPI reduce)

>Separate address spaces (Interaction by
MPI/PVM)

> Explicit interaction

>Explioit allocation by user

Explicit Parallel
Programming Models

Message — Passing

* Programs are multithreading and asynchronous
requiring explicit synchronization

* More flexible than the data parallel model, but it

still lacks support for the work pool paradigm.

* PVYM and MPI can be used

* Message passing programs exploit large-grain
parallelism

Explicit Parallel Programming Models
Shared Variable Model

It has a single address space (Simuilar to data parallel)

It 1s multithreading and asynchronous (Similar to
message-passing model)

Data resides in single shared address space, thus does
not have to be explicitly allocated

Workload can be either explicitly or implicitly
allocated

Communication 1s done mmplicitly through shared
reads and wrtes of wvanables. However
synchronization 1s explicit 2

Explicit Parallel Programming Models

Shared variable model

e The shared-variable model assumes the existence of a
single. shared address space where all shared data reside

Programs are multithreading and asynchronous, requiring
explicit synchronizations

Efficient parallel programs that are loosely synchronous
and have regular communication patterns, the shared
variable approach 1s not easier than the message passing
model

Other Parallel Programming Models

e Functional programming

e [ogic programming

e Computing by learning

e Object oriented programming

Thank You

AL-MAMOON UNIVERSITY COLLEGE

Computer Science Department

Parallel Programming

Lecture §

20202021

1. Basic Concepts

Single core processor: is a microprocessor with a single core in one chip, running a single thread in one
time.

Multi-core processor: is a microprocessor with multiple cores in one chip, running multiple threads in one
time.

. . . Parallel Computing: is a type of computation to
proceed many calculations in simultaneously. As a

D [:] - - - - - . - ibseg?tf;:l’ used to divide larger problems in smaller

PP PP PP P _ gerp .

] D once, which can then be solved at the same time (see
figl).

Onene

Figure 1 Parallel Computing example

Process(Computing): is the instance of a running program that is being executéd“by one or many threads.
Each process is an independent entity to which system resources such as CPU time, memary, etc. are
allocated and each process is executed in a separate address space. :

When a program is loaded into the memory and it Heap }
becomes a process, it can be divided into four sections — stack,
heap, text and data. The following image shows a simplified i
layout of a process inside main memory (see fig2).

Text

Figure 2 Process layout inside memory.

Component & Description
1. Stack The process Stack contains the temporary data such as method/function parameters, return
address and local variables.
2. Heap Thisis dynamically allocated memory to a process during its run time.

3. Text This includes the current activity represented by the value of Program Counter and the
contents of the processor's registers.
4. Data This section contains the global and static variables.

Program: is a piece of code which may be a single line or millions of lines.

#include <stdio.h>

int main () {
printf ("Hello, World! \n");
return 0;

Process Life Cycle

When a process executes, it passes through different states. In general, a process can have one of the
following five states at a time (see fig 3).

Figure 3 Process life cycle

Thread: is the smallest sequence of programmed instructions that can be managed independently by a
scheduler. Multiple threads can exist within one process (see fig 4).

[code ” data ” files | I code ” data “ files I

1 1
| stack I |regislers I |regtsters| |reg|slers|
| stack || stack || stack |

thread —» ; ; ; ;4—— thread

single-threaded process multithreaded process
Figure 4 Process with single and multithread example

Task: is a unit of execution or a unit of work, that occurs during the first step of executing parallel
program.

Afirst step in designing the parallel
program is to break the problem into separate
| ||

"chunks or pieces" of work that can be distributed
task 1 task 2 task 3
Figure 5 Tasks description

to multiple tasks.

Task granularity: The size of tasks (e.g., in terms of the number of instructions) and there is typically the
possibility of choosing tasks of different sizes.

]

ool] |5

Scheduling: is the assignment of tasks to processes or threads with a fixed order to execute the tasks.
Scheduling can be done by hand in the source code or by the programming environment, at compile time
or dynamically at runtime.

Mapping: is the assignment of processes or threads onto the physical units, processors or cores, and it is
usually done by the runtime system but can sometimes be influenced by the programmer.

Note: To execute any parallel programs correctly need to consider the synchronization and coordination
of threads and processes.

Parallel execution time: is the time elapsed between the start of the application on the first processor and

the end of the execution of the application on all processors. computation time on processors or cores and
synchronization time for data exchange are important aspects in parallel computing.

The parallel execution time should be smaller than the sequential execution time on one processor so
that designing a parallel program is worth the effort.

Parallel program must have —>parallel execution time < sequential execution time
Less than

Idle times: is an unproductive time where the processor cannot do anything useful, only wait for
an event to happen.

Load balancing: is good synchronization and mapping strategy to the parallel program with
small idle time. This occurs when the work load is assigned equally to processors or cores.

2. Types of Parallel Programming
Parallel processing can be subdivided into two groups as explained below.

a) Task based: In this type every processor in the system will execute different jobs or tasks in a

parallel way. For example, in MS Word, doing two tasks (printing and Spell Checking) at the same
time considered as separated tasks in different processors.

b) Data based: In this type, each processor in the system will perform different data sets in parallel
way. For example, in image processing, convert the image color to grayscale by dividing the image
into upper and lower halves and each half converted by different processors.

3. Shared memory or distributed memory models

In the shared memory; in case of desktop or laptop computers; there is only one memory unit and

multiprocessing units, all processors in this model have the right access to the memory unit which is shared
between them.

In the distributed memory; as in the computer cluster; every multiple processing unit have their own
memory unit to store the data. In this model, the information is passed between these units.

The computer clusters; are separate units of computers that are connected through the network, working
as a single system.

Thus, the multiprocessors can be divided into two shared-memory model as main categories- UMA
(Uniform Memory Access), NUMA (Non-uniform Memory Access) as illustrated in Fig 6.

I Network I

Cache Cache Cache Cache
Cache Cache Cache Cache

a) UMA b) NUMA

Figure 6 Shared (UMA) and distributed (NUMA) memory models

Each processor needs its own private cache to be fed quickly.

4. Flynn's Taxonomy

First proposed by Michael Flynn in 1966, Flynn's taxonomy is a specific classification of parallel computer

architectures that are based on the number of synchronized instruction (single or multiple) and data streams
(single or multiple) available in the architecture.

The four categories in Flynn's taxonomy are the following:

a) Single instruction, Single data (SISD): a single
instruction, operating on a single data stream. All the - «—> PE
instructions and data to be processed have to be stored g]g
In primary memory. i

weaqg vogaIngsu|

b) Multiple instruction, Single data (MISD): multiple
instructions operate on one data stream. Each processing
unit operates on the data independently via separate
instruction stream.

MISD structure is only of theoretical interest since no : :

practical system has been constructed using this M ——>Ccu —>

organization. S

c) Single instruction, Multiple data (SIMD): a single i Mamgy
instruction operates on multiple different data streams. Py
All processors receive the same instruction from the '
control unit but operate on different items of data. The & &
shared memory unit must contain multiple modules so el - !

wrong ewg

that it can communicate with all the processors 1 1 !
- M Memory Moduse:
simultaneously. ‘I‘ ';' 1

d) Multiple instruction, Multiple data (MIMD): M M M
multiple autonomous processors simultaneously I I !
executing different instructions on different data. In £E 3 £E
MIMD, each processor has a separate program and an CI” CIU CIU

instruction stream is generated from each program. ,
Interconnection Network

Where, CU = Control Unit, PE = Processing Element,
M = Memory

The motivations of using parallel processing can be summarized as follows:

= Faster execution time, parallel processing allowing the execution of applications in a shorter time.

= Higher computational power, to solve larger problems in a short point of time.

= Higher throughput, to solve many problems or large problems in short time.

= Working on different tasks simultaneously, you can do many things simultaneously by using
multiple computing resources.

S. Effectiveness of Parallel processing

Throughout the book. we will be using certain measures to compare the effectiveness of various parallel
algorithms or architectures for solving desired problems. The following definitions and notations are
applicable.

p Number of processors
W(p) Total number of unit operations performed by the p processors: this is often referred to as
P computational work or energy
T(p) Execution time with p processors: clearly, T(1) = W(1) and T(p) < W(p)
T(1)
S(p) Speed —up = T_(p)
E(p) . (1)
Efficiency = ——=
R() W
Redundancy = W)
Up) " W(p)
Utilization = ———
PT(p)
o) . (1)
- Quality = ————~—
pT*(P)Wekp)

Example: Finding the sum of 16 numbers can be
represented by the binary-tree computation graph
of Figure 4 with T(1) = W{l) = 15. Assume unit-
time additions and ignore all else. Withp =8
processors, we have

W(s) =15 T(8) =4
E(8) =15/(8 -4) = 47%
S(8) = 15/4 = 3.75

R(8) =15/15=1

0(8) =1.76

Figure 7 Computation graph for finding the sum of 16 manbers

Essentially, the 8 processors perform all of the additions at the same tree level in each time unit,

beginning with the leaf nodes and ending at the root. The relatively low efficiency is the result of limited
parallelism near the root of the tree.

Speedup

Speedup is the expected performance benefit from running an application on a multicore versus a single-
core machine. When speedup is measured, single-core machine performance is the baseline. For example,
assume that the duration of an application on a single-core machine is six hours. You might expect that an
application running on a single-core machine would run twice as quickly on a dual-core machine, and that
a quad core machine would run the application four times as fast. But that’s not exactly correct.

Here are some of the limitations to linear speedup (full parallelization) of parallel code:
Serial code

e Overhead from parallelization
e Synchromzation
e Sequential mput/output

Predicting speedup is important in designing, benchmarking, and testing your parallel application. Fortunately,
there are formulas for calculating speedup. One such formulas are Amdahl’s Law and Gustafson’s Law.

% Amdahl’s Law
It calculates the speedup of parallel code based on three variables:

e Duration of running the application on a single-core machine
e The percentage of the application that is parallel
e The number of processor cores

1
P
1-pG)
P : is the percent of the application that runs in parallel.
N : 1s the number of processor cores.

Speedup =

Example: suppose you have an application that is 75 percent parallel and runs on a machine with three
processor cores. The first iteration to calculate Amdahl’s Law is shown below. In the formula, P is .75
(the parallel portion) and N is 3 (the number of cores).

1
2

Speedup = =
1-075%)

The application will run twice as fast on a three processor-core machine.

< Gustafson’s Law

You may have an application that’s split consistently into a sequential and parallel portion. Amdahl’s Law
maintains these proportions as additional processors are added. The serial and parallel portions each remain
half of the program. But in the real world, as computing power increases.

Amdahl’s Law does not account for the overhead required to schedule, manage, and execute parallel tasks.
Gustafson’s Law takes both of these additional factors into account. Here is the formula to calculate speedup
by using Gustafson’s Law.

S+N(1-5)

Speedup = St(-9) L

In the above formula. S is the percentage of the serial code in the application, N is the number of
processor cores, and 0, is the overhead from parallelization.

Also speedup can be computed using the bellow
equation

Speedup=s+pxN

s--> time spend in executing serial
p--> time spend in executing parallel
N--> no of processor

also s+p=1

