
1

2

3

4

5

6

7

1

1

1. Basic Concepts

Single core processor: is a microprocessor with a single core in one chip, running a single thread in one

time.

Multi-core processor: is a microprocessor with multiple cores in one chip, running multiple threads in one

time.

Parallel Computing: is a type of computation to

proceed many calculations in simultaneously. As a

benefit,

is often used to divide larger problems in smaller

once, which can then be solved at the same time (see

fig1).

Process(Computing): is the instance of a running program that is being executed by one or many threads.

Each process is an independent entity to which system resources such as CPU time, memory, etc. are

allocated and each process is executed in a separate address space.

When a program is loaded into the memory and it

becomes a process, it can be divided into four sections ─ stack,

heap, text and data. The following image shows a simplified

layout of a process inside main memory (see fig2).

Figure 2 Process layout inside memory.

Component & Description

1. Stack The process Stack contains the temporary data such as method/function parameters, return

address and local variables.

2. Heap This is dynamically allocated memory to a process during its run time.

3. Text This includes the current activity represented by the value of Program Counter and the

contents of the processor's registers.

4. Data This section contains the global and static variables.

2

2

Program: is a piece of code which may be a single line or millions of lines.

#include <stdio.h>

int main() {

printf("Hello, World! \n");

return 0;

}

Process Life Cycle

When a process executes, it passes through different states. In general, a process can have one of the

following five states at a time (see fig 3).

Figure 3 Process life cycle

Thread: is the smallest sequence of programmed instructions that can be managed independently by a

scheduler. Multiple threads can exist within one process (see fig 4).

Figure 4 Process with single and multithread example

Task: is a unit of execution or a unit of work, that occurs during the first step of executing parallel

program.

3

3

A first step in designing the parallel
program is to break the problem into separate
"chunks or pieces" of work that can be distributed

to multiple tasks.

Figure 5 Tasks description

Task granularity: The size of tasks (e.g., in terms of the number of instructions) and there is typically the

possibility of choosing tasks of different sizes.

Scheduling: is the assignment of tasks to processes or threads with a fixed order to execute the tasks.

Scheduling can be done by hand in the source code or by the programming environment, at compile time

or dynamically at runtime.

Mapping: is the assignment of processes or threads onto the physical units, processors or cores, and it is

usually done by the runtime system but can sometimes be influenced by the programmer.

Note: To execute any parallel programs correctly need to consider the synchronization and coordination

of threads and processes.

Parallel execution time: is the time elapsed between the start of the application on the first processor and

the end of the execution of the application on all processors. computation time on processors or cores and

synchronization time for data exchange are important aspects in parallel computing.

The parallel execution time should be smaller than the sequential execution time on one processor so

that designing a parallel program is worth the effort.

Parallel program must have parallel execution time < sequential execution time
Less than

Idle times: is an unproductive time where the processor cannot do anything useful, only wait for

an event to happen.

Load balancing: is good synchronization and mapping strategy to the parallel program with

small idle time. This occurs when the work load is assigned equally to processors or cores.

4

4

2. Types of Parallel Programming

Parallel processing can be subdivided into two groups as explained below.

a) Task based: In this type every processor in the system will execute different jobs or tasks in a

parallel way. For example, in MS Word, doing two tasks (printing and Spell Checking) at the same

time considered as separated tasks in different processors.

b) Data based: In this type, each processor in the system will perform different data sets in parallel

way. For example, in image processing, convert the image color to grayscale by dividing the image

into upper and lower halves and each half converted by different processors.

3. Shared memory or distributed memory models

In the shared memory; in case of desktop or laptop computers; there is only one memory unit and

multiprocessing units, all processors in this model have the right access to the memory unit which is shared

between them.

In the distributed memory; as in the computer cluster; every multiple processing unit have their own

memory unit to store the data. In this model, the information is passed between these units.

The computer clusters; are separate units of computers that are connected through the network, working

as a single system.

Thus, the multiprocessors can be divided into two shared-memory model as main categories- UMA

(Uniform Memory Access), NUMA (Non-uniform Memory Access) as illustrated in Fig 6.

Figure 6 Shared (UMA) and distributed (NUMA) memory models

Each processor needs its own private cache to be fed quickly.

5

5

4. Flynn's Taxonomy

First proposed by Michael Flynn in 1966, Flynn's taxonomy is a specific classification of parallel computer

architectures that are based on the number of synchronized instruction (single or multiple) and data streams

(single or multiple) available in the architecture.

The four categories in Flynn's taxonomy are the following:

a) Single instruction, Single data (SISD): a single

instruction, operating on a single data stream. All the

instructions and data to be processed have to be stored

in primary memory.

b) Multiple instruction, Single data (MISD): multiple

instructions operate on one data stream. Each processing

unit operates on the data independently via separate

instruction stream.

MISD structure is only of theoretical interest since no

practical system has been constructed using this

organization.

c) Single instruction, Multiple data (SIMD): a single

instruction operates on multiple different data streams.

All processors receive the same instruction from the

control unit but operate on different items of data. The

shared memory unit must contain multiple modules so

that it can communicate with all the processors

simultaneously.

d) Multiple instruction, Multiple data (MIMD):

multiple autonomous processors simultaneously

executing different instructions on different data. In

MIMD, each processor has a separate program and an

instruction stream is generated from each program.

Where, CU = Control Unit, PE = Processing Element,

M = Memory

The motivations of using parallel processing can be summarized as follows:

Faster execution time, parallel processing allowing the execution of applications in a shorter time.

Higher computational power, to solve larger problems in a short point of time.

Higher throughput, to solve many problems or large problems in short time.

Working on different tasks simultaneously, you can do many things simultaneously by using

multiple computing resources.

6

6

(1)

7

8

9

 Also speedup can be computed using the bellow
equation

Speedup = s + p x N
s--> time spend in executing serial
p--> time spend in executing parallel
N--> no of processor
also s + p = 1

1

2

Program

 A computer program is a collection of instructions that performs a

specific task when executed by a computer.

 A computer program is usually written by a computer programmer in a

programming language.

Process

 In computing, a process is the instance of a computer program that is being

executed by one or many threads.

 It contains the program code and its activity.

 Depending on the operating system (OS), a process may be made up of

multiple threads of execution that execute instructions concurrently.

3

 Any running instance of a program is called as process.

 Or it can also be described as a program under execution.

 A program can have N processes.

 Process resides in main memory & hence disappears whenever machine

reboots.

 Multiple processes can be run in parallel on a multiprocessor system.

Task

A task is a set of program instructions that are loaded in memory. Short answer:

A thread is a scheduling concept, it's what the CPU actually 'runs' (you don't run

a process). A process needs at least one thread that the CPU/OS executes

 Thread

4

 In computer science, a thread of execution is the smallest sequence of

programmed instructions that can be managed independently by a scheduler,

which is typically a part of the operating system.

 A Thread is commonly described as a lightweight process.

 1 process can have N threads.

 All threads which are associated with a common process share same memory

as of process.

Difference between Process and Thread

5

 The essential difference between a thread and a process is the work that each

one is used to accomplish.

 Threads are being used for small & compact tasks, whereas processes are

being used for more heavy tasks.

 One major difference between a thread and a process is that threads within the

same process consume the same address space, whereas different processes

do not. This allows threads to read from and write to the common shared and

data structures and variables, and also increases ease of communication

between threads.

 Communication between two or more processes – also known as Inter-Process

Communication i.e. IPC – is quite difficult and uses intensive resources.

Difference between Task and Thread

 Tasks are very much similar to threads, the difference is that they generally do

not interact directly with OS.

 Like a Thread Pool, a task does not create its own OS thread. A task may or

may not have more than one thread internally.

 If you want to know when to use Task and when to use Thread: Task is simpler

to use and more efficient that creating your own Threads. But sometimes, you

need more control than what is offered by Task. In those cases, it makes more

sense to use Thread directly.

 The bottom line is that Task is almost always the best option; it provides a much

more powerful API and avoids wasting OS threads.

 The only reasons to explicitly create your own Threads in modern code are

setting per-thread options, or maintaining a persistent thread that needs to

maintain its own identity.

6

Parallelism In Computer

 The term Parallelism refers to techniques to make programs faster by

performing several computations at the same time.

 This requires hardware with multiple processing units. ... To this end, it can

even be an advantage to do the same computation twice on different units

Multiprocessing

Multiprocessing, in computing, a mode of operation in which two or more processors

in a computer simultaneously process two or more different portions of the same

program

7

Multithread

In computer architecture, multithreading is the ability of a central processing unit

(CPU) (or a single core in a multi-core processor) to provide multiple threads of

execution concurrently, supported by the operating system. This approach differs

from multiprocessing.

Multitasking

Multitasking, the running of two or more programs (sets of instructions) in

one computer at the same time. Multitasking is used to keep all of

a computer's resources at work as much of the time as possible.

Concurrency

In computer science, concurrency is the ability of different parts or units of a program,

algorithm, or problem to be executed out-of-order or in partial order, without affecting

the final outcome

8

Parallel Computing

Parallel computing is a type of computation where many calculations or the execution

of processes are carried out simultaneously. Large problems can often be divided into

smaller ones, which can then be solved at the same time.

CPU Core

 A core is a small CPU or processor built into a CPU or CPU socket.

 It can independently perform or process all computational tasks.

 From this perspective, we can consider a core to be a smaller CPU or a

smaller processor within a big processor

Intel Core

9

What’s a Core Processor?

 Intel Core processors first came to the desktop in mid-2006, replacing the

Pentium line that had previously comprised Intel’s high-end processors.

 The Core “i” names are primarily “high level” categorizations that help

differentiate processors within a given generation.

 A specific Core “i” name doesn’t mean the processor has a certain number of

cores, nor does it guarantee features, like Hyper-Threading, which allows the

CPU to process instructions faster.

 Feature specifics can change between generations. As technology advances, it

becomes cheaper to create higher-performing, low-end parts.

 It also means that features once found in parts like a Core i3 can disappear

from the class entirely.

 Therefore, the differences between Core i3, Core i5, and Core i7 designations

matter most within its respective generation.

 For example, a seventh-generation “Kaby Lake” Core i7, and a third-generation

“Ivy Bridge” Core i7 might run at similar speeds with similar core counts.

 Intel Core i3 processors are where the Core lineup starts for each generation.

Those earlier dual-core Core i3’s also tended to have four threads, also known

as Hyper-Threading.

 Intel has elected not to double the thread count in recent Core i3 generations;

instead, it’s building CPUs with four cores and four threads.

 Core i3 processors also have lower cache sizes (onboard memory).

 They handle less RAM than other Core processors and have varying clock

speeds. At this writing, the ninth-generation, Core i3 desktop processors have a

top clock speed of 4.6 GHz

 Core i5: The Lower Mid-Range, a step up from Core i3 is the Core i5. This is

often where bargain-hunting PC gamers look for solid deals on processors. An

i5 typically lacks Hyper-Threading, but it has more cores (currently, six, rather

than four) than Core i3. The i5 parts also generally have higher clock speeds, a

larger cache, and can handle more memory. The integrated graphics are also a

bit better. You see new Core i5 processors with Hyper-Threading on laptops,

but not desktops.

https://www.howtogeek.com/194756/cpu-basics-multiple-cpus-cores-and-hyper-threading-explained/

11

 Core i7: As of 2017, Core i7 CPUs had Hyper-Threading on desktops, but the

more recent generations do not. These processors have higher core counts (up

to eight in the ninth generation) than the i5’s, a larger cache, and a bump in

graphics performance, but they have the same memory capacity as the Core

i5’s (although, that could change in the future).

 Core i9: An Intel-based gaming PC. The Core i9 is at the top of the Intel Core

pack. This is where you find many top-performing processors, like the Core i9-

9900K—a current favorite for gaming.

 At the Core i9 level in the current ninth-generation CPUs, we see eight cores,

16 threads, a larger cache than the Core i5 processors, faster clock speeds (up

to 5 GHz for boost), and another bump in graphics performance. However, Core

i9 CPUs still have the same maximum memory capacity as the Core i5.

 Core X: The Ultimate Intel also has a “prosumer” range of fancier, high-end

desktop (HEDT) processors for enthusiasts, gamers, content creators, or

anyone else who needs that level of performance.

In October 2019, Intel announced new Core X parts that range from 10 to 18 cores

(Core i9s max out at eight). They include Hyper-Threading, and high boost clocks,

although, not necessarily higher than Core i9 CPUs. They also have a higher number

of PCIe lanes and can handle more RAM, and they have a much higher TDP than the

other Core parts.

Which Should You Buy?

Core designations refer to relative improvements within a specific generation of

processors. As the Core number increases, so do the capabilities of the processors,

including higher core counts, faster clock speeds, more cache, and the ability to

handle more RAM. At Core X, you also usually get more PCIe lanes.

If you’re a gamer, look for Core i7 and higher. You can definitely game with a newer

Core i5, but you’ll get more future-proofing with a Core i7 and up. Content creators

should look at Core i7 and Core i9 CPUs, as you’ll want those sweet threads.

For everyday tasks, like web browsing, spreadsheets, and word processing, a Core i3

will get the job done.

Something to keep in mind while you shop, though, is not all Intel Core CPUs have

integrated graphics. These processors end with an “F” to designate that they come

without a GPU, such as the Core i3-9350KF, i5-9600KF, and i9-9900KF.

https://www.howtogeek.com/438898/what-is-tdp-for-cpus-and-gpus/

11

Flynn's Taxonomy

Flynn's taxonomy is a classification of computer architectures, proposed by Michael

J. Flynn in 1966. The classification system has stuck, and it has been used as a tool

in design of modern processors and their functionalities. Since the rise

of multiprocessing central processing units (CPUs), a multiprogramming context has

evolved as an extension of the classification system.

Single instruction stream, single data stream (SISD)

 A sequential computer which exploits no parallelism in either the instruction or

data streams.

 Single control unit (CU) fetches single instruction stream (IS) from memory.

 The CU then generates appropriate control signals to direct single processing

element (PE) to operate on single data stream (DS) i.e., one operation at a

time.

 Examples of SISD architecture are the traditional uniprocessor machines like

older personal computers (PCs; by 2010, many PCs had multiple cores)

and mainframe computers.

Single instruction stream, multiple data streams (SIMD)

 A single instruction operates on multiple different data streams. Instructions can

be executed sequentially,

 such as by pipelining, or in parallel by multiple functional units.

 Single instruction, multiple threads (SIMT) is an execution model used

in parallel computing where single instruction, multiple data (SIMD) is combined

with multithreading. This is not a distinct classification in Flynn's taxonomy,

https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Michael_J._Flynn
https://en.wikipedia.org/wiki/Michael_J._Flynn
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Multiprogramming
https://en.wikipedia.org/wiki/Uniprocessor
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Single_instruction,_multiple_threads
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading

12

where it would be a subset of SIMD. Nvidia commonly uses the term in its

marketing materials and technical documents where it argues for the novelty of

Nvidia architecture

Multiple instruction streams, single data stream (MISD)

 Multiple instructions operate on one data stream. This is an uncommon

architecture which is generally used for fault tolerance.

 Heterogeneous systems operate on the same data stream and must agree on

the result.

 Examples include the Space Shuttle flight control computer.

Multiple instruction streams, multiple data streams (MIMD)

 Multiple autonomous processors simultaneously executing different instructions

on different data.

 MIMD architectures include multi-core superscalar processors, and distributed

systems, using either one shared memory space or a distributed memory

space.

Diagram comparing classifications

These four architectures are shown below visually. Each processing unit (PU) is

shown for a uni-core or multi-core computer:

https://en.wikipedia.org/wiki/Space_Shuttle
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Distributed_system
https://en.wikipedia.org/wiki/Distributed_system
https://en.wikipedia.org/wiki/File:SISD.svg

13

Further divisions

As of 2006, all the top 10 and most of the TOP500 supercomputers are based on a

MIMD architecture.

Some further divide the MIMD category into the two categories below, and even

further subdivisions are sometimes considered.

https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/File:MISD.svg
https://en.wikipedia.org/wiki/File:SIMD.svg
https://en.wikipedia.org/wiki/File:MIMD.svg

14

Single Program, Multiple Data Streams (SPMD)

 Multiple autonomous processors simultaneously executing the same program

(but at independent points, rather than in the lockstep that SIMD imposes) on

different data.

 Also termed single process, multiple data- the use of this terminology for SPMD

is technically incorrect, as SPMD is a parallel execution model and assumes

multiple cooperating processors executing a program.

 SPMD is the most common style of parallel programming.

 The SPMD model and the term was proposed by Frederica Darema of the RP3

team.

Multiple programs, multiple data streams (MPMD)

 Multiple autonomous processors simultaneously operating at least 2

independent programs.

 Typically such systems pick one node to be the "host" ("the explicit host/node

programming model") or "manager" (the "Manager/Worker" strategy), which

runs one program that farms out data to all the other nodes which all run a

second program.

 Those other nodes then return their results directly to the manager. An example

of this would be the Sony PlayStation 3 game console, with its SPU/PPU

processor.

OpenMP

 Application Program Interface (API),

 Jointly defined by a group of major computer hardware and software vendors.

 OpenMP provides a portable, scalable model for developers of shared memory

parallel applications.

 The API supports C/C++ and Fortran on a wide variety of architectures

https://en.wikipedia.org/wiki/Lockstep_(computing)
https://en.wikipedia.org/wiki/Cell_(microprocessor)
https://en.wikipedia.org/wiki/Cell_(microprocessor)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1

1

1. Basic Concepts

Single core processor: is a microprocessor with a single core in one chip, running a single thread in one

time.

Multi-core processor: is a microprocessor with multiple cores in one chip, running multiple threads in one

time.

Parallel Computing: is a type of computation to

proceed many calculations in simultaneously. As a

benefit,

is often used to divide larger problems in smaller

once, which can then be solved at the same time (see

fig1).

Process(Computing): is the instance of a running program that is being executed by one or many threads.

Each process is an independent entity to which system resources such as CPU time, memory, etc. are

allocated and each process is executed in a separate address space.

When a program is loaded into the memory and it

becomes a process, it can be divided into four sections ─ stack,

heap, text and data. The following image shows a simplified

layout of a process inside main memory (see fig2).

Figure 2 Process layout inside memory.

Component & Description

1. Stack The process Stack contains the temporary data such as method/function parameters, return

address and local variables.

2. Heap This is dynamically allocated memory to a process during its run time.

3. Text This includes the current activity represented by the value of Program Counter and the

contents of the processor's registers.

4. Data This section contains the global and static variables.

2

2

Program: is a piece of code which may be a single line or millions of lines.

#include <stdio.h>

int main() {

printf("Hello, World! \n");

return 0;

}

Process Life Cycle

When a process executes, it passes through different states. In general, a process can have one of the

following five states at a time (see fig 3).

Figure 3 Process life cycle

Thread: is the smallest sequence of programmed instructions that can be managed independently by a

scheduler. Multiple threads can exist within one process (see fig 4).

Figure 4 Process with single and multithread example

Task: is a unit of execution or a unit of work, that occurs during the first step of executing parallel

program.

3

3

A first step in designing the parallel
program is to break the problem into separate
"chunks or pieces" of work that can be distributed

to multiple tasks.

Figure 5 Tasks description

Task granularity: The size of tasks (e.g., in terms of the number of instructions) and there is typically the

possibility of choosing tasks of different sizes.

Scheduling: is the assignment of tasks to processes or threads with a fixed order to execute the tasks.

Scheduling can be done by hand in the source code or by the programming environment, at compile time

or dynamically at runtime.

Mapping: is the assignment of processes or threads onto the physical units, processors or cores, and it is

usually done by the runtime system but can sometimes be influenced by the programmer.

Note: To execute any parallel programs correctly need to consider the synchronization and coordination

of threads and processes.

Parallel execution time: is the time elapsed between the start of the application on the first processor and

the end of the execution of the application on all processors. computation time on processors or cores and

synchronization time for data exchange are important aspects in parallel computing.

The parallel execution time should be smaller than the sequential execution time on one processor so

that designing a parallel program is worth the effort.

Parallel program must have parallel execution time < sequential execution time
Less than

Idle times: is an unproductive time where the processor cannot do anything useful, only wait for

an event to happen.

Load balancing: is good synchronization and mapping strategy to the parallel program with

small idle time. This occurs when the work load is assigned equally to processors or cores.

4

4

2. Types of Parallel Programming

Parallel processing can be subdivided into two groups as explained below.

a) Task based: In this type every processor in the system will execute different jobs or tasks in a

parallel way. For example, in MS Word, doing two tasks (printing and Spell Checking) at the same

time considered as separated tasks in different processors.

b) Data based: In this type, each processor in the system will perform different data sets in parallel

way. For example, in image processing, convert the image color to grayscale by dividing the image

into upper and lower halves and each half converted by different processors.

3. Shared memory or distributed memory models

In the shared memory; in case of desktop or laptop computers; there is only one memory unit and

multiprocessing units, all processors in this model have the right access to the memory unit which is shared

between them.

In the distributed memory; as in the computer cluster; every multiple processing unit have their own

memory unit to store the data. In this model, the information is passed between these units.

The computer clusters; are separate units of computers that are connected through the network, working

as a single system.

Thus, the multiprocessors can be divided into two shared-memory model as main categories- UMA

(Uniform Memory Access), NUMA (Non-uniform Memory Access) as illustrated in Fig 6.

Figure 6 Shared (UMA) and distributed (NUMA) memory models

Each processor needs its own private cache to be fed quickly.

5

5

4. Flynn's Taxonomy

First proposed by Michael Flynn in 1966, Flynn's taxonomy is a specific classification of parallel computer

architectures that are based on the number of synchronized instruction (single or multiple) and data streams

(single or multiple) available in the architecture.

The four categories in Flynn's taxonomy are the following:

a) Single instruction, Single data (SISD): a single

instruction, operating on a single data stream. All the

instructions and data to be processed have to be stored

in primary memory.

b) Multiple instruction, Single data (MISD): multiple

instructions operate on one data stream. Each processing

unit operates on the data independently via separate

instruction stream.

MISD structure is only of theoretical interest since no

practical system has been constructed using this

organization.

c) Single instruction, Multiple data (SIMD): a single

instruction operates on multiple different data streams.

All processors receive the same instruction from the

control unit but operate on different items of data. The

shared memory unit must contain multiple modules so

that it can communicate with all the processors

simultaneously.

d) Multiple instruction, Multiple data (MIMD):

multiple autonomous processors simultaneously

executing different instructions on different data. In

MIMD, each processor has a separate program and an

instruction stream is generated from each program.

Where, CU = Control Unit, PE = Processing Element,

M = Memory

The motivations of using parallel processing can be summarized as follows:

Faster execution time, parallel processing allowing the execution of applications in a shorter time.

Higher computational power, to solve larger problems in a short point of time.

Higher throughput, to solve many problems or large problems in short time.

Working on different tasks simultaneously, you can do many things simultaneously by using

multiple computing resources.

6

6

(1)

7

8

9

 Also speedup can be computed using the bellow
equation

Speedup = s + p x N
s--> time spend in executing serial
p--> time spend in executing parallel
N--> no of processor
also s + p = 1

