General Physics
 Lecture (5)
 (Work \& Energy)

Prof. Dr. Zina A. Al Shadidi

Work and Energy

- one of the most central concepts in science is energy; the combination energy and matter makes up our universe
- matter is the substance of the universe, while energy is what moves the substance
- matter is what we can see, touch and feel; energy is somewhat more elusive to categorize; energy is not typically seen or felt

Work

- work is the product of the force and distance and is a scalar measurement Work $=$ Force \times Distance $W=F d$
- the unit of work is the joule (J ; where $1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}$
- when you lift an object off the ground you are doing work; the heavier the load ($\uparrow F$) or the higher you lift the object ($\uparrow d$), the more work you are performing
- there are two things that must occur if work is being done:
- a force must be exerted
- the object must move
- sometimes there are situations that appear to be work, but are actually not; for example, if you hold a barbell steady over your head, you are not doing any work (remember, the object has to move in order to do work)
- We will repeat :
there are two things that must occur if work is being done:
- a force must be exerted
- the object must move

Power

- What if we can do the same work in shorter time!!??
- the time it takes to perform work makes a difference, indeed.
- this difference in how fast the work is done is called power
- power is equal to the amount of work done per unit time
- Power = Work/time interval

$$
P=W / t
$$

- one of the original units of power called horsepower was developed by Scottish engineer James Watt (1736-1819); Watt was famous for the development of the steam engine
- Watt wanted to know how the steam engine compared to horses in pumping out water out of coal mines; he found that a horse could lift 150 pounds 220 feet in one minute;
- 1 horsepower is equal to 745.2 watts
- the SI unit of power is the watt (W); $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$
- engines are valued because they can perform a lot of work very quickly

Mechanical Energy

- energy is that which enables objects to do work
- there are many types of energy; like work, energy is measure in joules (J)
- we will focus of mechanical energy; mechanical energy is separated into two categories; potential and kinetic

Potential Energy

- an object may store energy because of its position; this is called potential energy (PE)
- a book on a shelf, a rock tossed into the sky, and compressed spring, all have potential energy; work was done to all of these objects which stored the energy
- work is required to elevate objects against Earth's gravity; the amount of gravitational potential energy possessed by an object is equal to the amount of work done against gravity in lifting it
- Gravitational Potential Energy $=$ Weight \times Height

$$
U_{g}=m g d
$$

the unit of potential energy (as with any type of energy) is the joule (J)

Kinetic Energy

- if we perform work on a moving object, then we can change its energy of motion
- if an object is in motion, then by virtue of that motion, it is capable of performing work
- kinetic energy (KE) is energy of motion; the kinetic energy of an object depends on its mass and speed

$$
\begin{aligned}
& \text { Kinetic Energy }=1 / 2 \text { mass } \times \text { speed }^{2} \\
& K E=1 / 2 m v^{2}
\end{aligned}
$$

- as a result:

$$
\begin{gathered}
\text { Net force } \times \text { distance }=\text { kinetic energy } \\
F d=1 / 2 m v^{2} \\
\text { Work }=\Delta K E
\end{gathered}
$$

Example (1) (Work)

- A constant force of 1.50 N is applied at an angle of 60° above the horizontal to a 2.00 kg block in contact with a horizontal frictionless surface (Figure below). The block moves a distance of 0.500 m along the surface. Calculate the work done by the agent of the force during this movement

Solution

$$
W=F \cdot \Delta r \cdot \cos \theta=(1.50 \mathrm{~N})(0.500 \mathrm{~m}) \cos 60^{\circ}=0.375 \mathrm{~J}
$$

It is useful to note that the work done is independent of the mass of the object.

Example (2) Work done by spring

- A mass is connected to the end of a spring. The spring constant is $k=$ $0.020 \mathrm{~N} . \mathrm{m}^{-1}$. The mass is released from a position $x_{i}=0.25 \mathrm{~m}$. How much work is done by the spring when the mass moves to the position $x_{f}=-0.10 \mathrm{~m}$?

Solution:

$$
\begin{aligned}
& W=\frac{1}{2} k\left(x_{i}^{2}-x_{f}^{2}\right) \\
&=\frac{1}{2}\left(0.020 N . m^{-1}\right)\left[(0.25 m)^{2}-(-0.10 m)^{2}\right] \\
&=5.25 \times 10^{-4} \mathrm{~J}
\end{aligned}
$$

The spring does a positive amount of work.

Example (3) Power

- The source of a force applied to an object does 2.00 J of work in an elapsed time of 0.500 s . Calculate the average power.

Solution:

$$
\bar{P}=\frac{\Delta W}{\Delta t}=\frac{2.00(J)}{0.500(s)}=4.00 \mathrm{Watts} .
$$

In the elapsed time given, energy is being transferred from the agent of the force to the object at the average rate of 4.00 joules per second.

