## ALMAMON University College

## Department of Anesthesiology

## Statistics

## Dr. SAJAD GHALIB IBRAHIM

## Outline

- Measures of centers
- Mean
- Median
- Mode
- Range
- Standard deviation


## Arithmetic Mean (Mean or average )

The measure of center obtained by adding the values and dividing the total by the number of values":

Arithmetic mean or simply the mean of a variable is defined as the sum of the observations divided by the number of observations.

## Example 1

$$
\mu=\frac{\sum x}{N}
$$

Find the mean of the five measures of BMI: 22, $22,26,24$, and 23.

## Solution

First add the data values, then divide by the number of data values.

$$
\bar{x}=\frac{\Sigma x}{n}=\frac{22+22+26+24+23}{5}=\frac{117}{5}=23.4
$$

## The median

The median of a data set is the measure of center that is the middle value when the original data values are arranged in order of increasing (or decreasing) magnitude.

## Example 2

Find the median of the five sample values used in Example 1: 22, 22, 26, 24 , and 23.

## Solution

First sort the data values by arranging them in order, as shown below:

$$
2222232426
$$

Because the number of data values is an odd number (5), the median is the number located in the exact middle of the sorted list, which is 23 . The median is therefore 23. Note that the median of 23 is different from the mean of 23.4 found in Example 1.

## The mode

The mode of a data set is the value that occurs with the greatest frequency.

## Example 3

Find the mode of these same values used in Example 1:
$22,22,26,24,23$

## Solution

The mode is 22 , because it is the data value with the greatest frequency.

## Range

The range of a set of data values is the difference between the maximum data value and the minimum data value.
Range $=($ maximum data value $)-($ minimum data value $)$

Example 1
Find the range of these numbers of chocolate chips: $22,22,26,24$.

Solution
range $=($ maximum value $)-($ minimum value $)=26-22=4.0$

## Standard Deviation (SD)

Is a measure of how much data values deviate away from the mean, and equal to:

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}
$$

$$
s=\sqrt{\frac{n\left(\Sigma x^{2}\right)-(\Sigma x)^{2}}{n(n-1)}}
$$

## Example 2

Find the standard deviation using the first formula to chocolate chips:
22, 22, 26, 24.

| $x$ | $\bar{x}$ (mean $)$ | $(x-\bar{x})$ | $(x-\bar{x})^{2}$ | s |
| :---: | :---: | :---: | :---: | :---: |
| 22 |  | $(23.5-22)=-1.5$ | 2.25 |  |
| 22 |  | $(23.5-22)=-1.5$ | 2.25 |  |
| 26 |  | $(23.5-26)=2.5$ | 6.25 |  |
| 24 |  | $(23.5-24)=0.5$ | 0.25 |  |
| $\sum x=94$ | $\sum x / \mathrm{n}=94 / 4$ <br> $=23.5$ |  | $\sum(x-\bar{x})^{2}=11$ | $\sqrt{\sum(x-\bar{x})^{2} / 3}$ |
|  |  |  |  | $\sqrt{\sum 11 / 3}=\sqrt{2.75}=1.9$ |

https://www.thoughtco.com/calculate-a-sample-standard-deviation-3126345

