ALMAMON UniversityCollege

Department of Anesthesiology

Statistics

Dr. SAJAD GHALIB IBRAHIM

Learning objectives

* Index to describe Health Status
- Ratio, proportion, rate and percentage
- Mortality rate
- Morbidity rate-prevalence and incidence

Summary

Categorical (qualitative)

- Ratio
- Rate
- Proportion
- Percentage

Numerical (quantitative)

- Mean
- Mode
- Median

Ratio

Relationship between 2 numbers in form of $\mathrm{X}: \mathrm{Y}$
Define as part divided by another part.
E.g. male to female ratio in this class:
$\frac{\text { number of female }}{\text { number of male }}=\frac{56}{23}$
ㄹ $2.43: 1$

Ratio-Properties

- $\mathrm{R}=\mathrm{a} / \mathrm{b}$
- R is always >0
- Often rescale by multiplying by a constant e.g. 100, 1000, 10000 etc
- May or may not have unit

Ratio -example

- R = number of doctors / population

R multiply by $\mathrm{k}=1000$
Unit $=$ doctors per 1000

- E.g. $\mathrm{R}=150 / 20000$ people
$R * k=00075 * 1000$
$=0.0075$ doctors per person
$=7.5$ doctors per 1000 people

Ratio -Odds

- $\mathrm{P}=$ proportion of people with disease.
$1-\mathrm{p}=$ proportion of people without disease.
Odds $=\mathrm{p} /(1-\mathrm{p})=$ "odds" of disease.
No units

Ratio -Odds

OR = odds ratio
$\mathrm{OR}=$ odds of disease in exposed population odds of disease in non-exposed population
$\mathrm{OR}=\underline{\mathrm{O} 1}$
O2
No units

Proportion

- Relationship between part to a whole.

Proportion of $X=\frac{X}{x+y}$

Can be used for categorical and numerical data (qy) in frequency table.

Proportion

- e.g. :
- $\mathrm{x}=$ number of male students $=120$
- $y=$ number of female students $=250$
- Proportion of male students $\frac{120}{120+250}$
$=0.324$

Properties of Proportion

- p takes on values between 0 and 1 (p is a fraction)
- p has no units
- p may be multiplied by a constant k ,
where k is a number such as
100, 1000 or 100000
- Percentage $=$ Proportion X 100

Rates

- A proportion but has multiplier and over specific period.
- Calendar time period is the same in both the numerator and denominator of a rate.
- A rate expresses the relative frequency of an event per unit time ("risk").

Rates

e.g. :

- Failure rate among students:
- = \# students failed * $100 * 1$ year
total \# students
- $=\frac{12 * 100 * 1 \text { year }}{250}$
$=4.8 \%$ per year

Rates

- Rates are used frequently in vital statistic
- Vital statistic describe health status of population
- E.g. : mortality rate, morbidity rate, fertility rate

Incidence

- Incidence:

$=$ No of new cases of specific disease in specific period of time
No of person at risk in specific period of time
e.g. Incidence of thyrotoxicosis in $2008=$ 10/100 000/year

Incidence

- Cumulative Incidence /Incidence Proportion
$=$ number of new cases within a specified time period size of the population initially at risks
- e.g. if a population initially contains 1,000 non-diseased persons and 29 develop a condition over two years of observation, the incidence proportion is 29 cases per 1,000 persons, i.e. 29%.

Incidence

Incidence Rate $=$

\# of new case
Total person years at risk
e.g. incidence rate of diabetes $=$

14 per 1000 persons-years

Incidence and prevalence

- Prevalence rate (point prevalence) $=$
$=$ \# of cases [old or new]of specific disease at time t total population at time t
- Prevalence rate $($ period prevalence $)=$
= \#cases diagnosed with a specific disease in a time total population in the time period

Incidence and prevalence

- A proportion is always a ratio
- A rate is always a ratio
- A rate may or may not be a proportion

Incidence and prevalence

- Based on table below
\square

Smoking

67

82 - 89
a) Calculate proportion and percentage of man among those subject who
i. Smoke
ii. Non smoking
iii. Odds ratio of smoking for men/women

