The Karnaugh Map

The Karnaugh Map

Karnaugh Maps are graphical representations of truth tables. They consist of a grid with one cell for each row of the truth table. The intersection of each row and column corresponds to a unique set of input values. The purpose of Karnaugh maps is to rearrange truth tables so that adjacent cells can be represented with a single product using the simplification previously described. Each square represents a minterm. Adjacent squares differ in the value of one variable. Alternative algebraic expressions for the same function are derived by recognizing patterns of squares

1-Two- Variable Karnaugh map

A	В	F
0	0	m_0
0	1	\mathbf{m}_1
1	0	m_2
1	1	m ₃

B 0		1	
0	m_0	m_1	
1	m_2	m ₃	

For example the truth table for OR gate

X	Y	F
0	0	0
0	1	1
1	0	1
1	1	1

F = X + Y

Two pairs of adjacent cells containing 1's can be combined using the Minimization.

2-Three- Variable Karnaugh Map

A	В	C	F
0	0	0	m 0
0	0	1	m1
0	1	0	m2
0	1	1	m3
1	0	0	m4
1	0	1	m5
1	1	0	m6
1	1	1	m7

1	BC 00	01	11	10
	m 0	m1	m3 .	m2
0	0	1	3	2
1	m4	m5	m7	m6
	4	5	7	6

³⁻Variable K-Map, minterm and cell position

2-Three-Variable Karnaugh Map

A	В	C	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$F(A,B,C)=\Sigma(0,1,2,4,5,7)=\overline{B}+\overline{AC}+AC$$

Note that: One square represents a minterm with three variables. Two adjacent squares represent a product term with two variables. Four "adjacent" terms represent a product term with one variable. Eight "adjacent" terms is the function of all ones (no variables) = 1.

Example: simplify the Boolean Function $F(X,Y,Z) = \sum (0,2,4,6)$

Solution: since the function has three variables, a three variable map must be used

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

YZ X	00	01	11	10
0	1	0	0	1
1	1	0	0	1
	-	412		es a

 $F=\overline{Z}$