Al Mamoun University College
Laser and Optoelectronics Engineering Department Chemistry

Lecture Two

Al Mamoun University College
Laser and Optoelectronics Engineering Department Chemistry

ChapterTwo

ToolsofAnalyticalChemistry

$>$ Componentsofmatter
> NumbersinAnalyticalChemistry
$>$ FundamentalUnitsof Measure
$>$ UnitsforExpressing Concentration
$>$ Molarity
$>$ Formality
> Normality
$>$ Molality
$>$ Weight,Volume,andWeight-to-Volume
$>$ Ratios

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

*Components of matter

Matter: anythingthathasmassandtakes up space.

EveryMatterisconsistingofbasicunitscalled molecules.

EachMoleculeiscomposed ofsmallestparticlescalled"Atom".

Atom: smallest unit consist of a central nucleus that is surrounded by one or more negatively charged electrons.

Nucleus: consists of subatomic particles called Protons, which are positively charged and neutrons, which has no charge (neutral).

The positive charges equal the negative charges, so the atom has no overall charge; it is electrically neutral

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

Electron(e^{-}):Itisnegativelychargedsubatomicparticlewhichits number is equal to the number of proton in a neutral atom.

> Proton($\mathbf{P +}+$):Itispositivelychargedsubatomicparticlewhichis more massive than electrons.

> Neutron (N): It is neutral subatomic particles that have approximately the same mass of protons.

Atomicnumber=numberofprotons=numberofelectrons

Massnumber=No.ofprotons(Atomicnumber)+No.ofneutrons

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

Example:

Theatomicnumberofasodiumatomis11anditsmass numberis23. Calculate the number of protons, neutrons and electrons it contains

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

Theatomicnumberofsodiumis11.Everysodiumatomhas11protons and
11 electrons.
Ithas11positivechargesand11negativecharges.
Themassnumberofanatomisitstotalnumberofprotonsandneutrons. The atomic number of a sodium atom is 11 and its mass number is 23 .

Calculatethenumberofprotons, neutronsandelectronsitcontains. Number of protons $=11$

Numberofelectrons= 11
Numberofneutrons(massnumber-atomicnumber)
$=23-11=12$

Chemistry

> NumbersinAnalyticalChemistry

Analytical chemistry is inherently a quantitative science. Whether determining the concentration of a species in a solution, evaluating an equilibriumconstant, measuring a reaction rate, or drawing a correlation between a compound's structure and its reactivity, analytical chemists make measurements and perform calculations.In this section we briefly review several important topics involving the use of numbers in analytical chemistry.

> FundamentalUnitsof Measure

Imagine that you find the following instructions in a laboratory procedure: "Transfer 1.5 of your sample to a 100 volumetric flask, and dilute to volume." How do you do this? Clearly these instructions are incomplete since the units of measurement are not stated. Compare this withacompleteinstruction:"Transfer1.5gofyour sampletoa100-mL volumetric flask, and dilute to volume." This is an instruction that you can easily follow.Table (2.1)(Fundamental SI Units).For example, we measure the quantity of heat produced during a chemical reaction in Joules,(J),where

$$
1 \mathrm{~J}=1 \frac{\mathrm{~m}^{2} \mathrm{~kg}}{\mathrm{~s}^{2}}
$$

Al Mamoun University College
Laser and Optoelectronics Engineering Department Chemistry

Table 2.1	Fundamental SI Units	
Measurement	Unit	Symbol
mass	kilogram	kg
volume	liter	L
distance	meter	m
temperature	kelvin	K
time	second	s
current	ampere	A
amount of substance	mole	mol

Table(2.1)(FundamentalSI Units)

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

$>$ UnitsforExpressing Concentration

Concentration:isageneralmeasurementunitstatingtheamountof solute present in a known amount of solution.

Concentration $=$ Amount of solute
 Volume of solution

Although the terms "solute" and "solution" are often associated with liquid samples, they can be extended to gas-phase and solid-phase samples as well. The actual units for reporting concentration depend on how the amounts of solute and solution are measured.

Solution:isahomogenousmixtureof2ormoresubstances.

Solute:isthesubstancepresentinthesmalleramount(s).

Solvent: isthesubstancepresentinthelargeramount.

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

Since there are different ways for expressing the "amount" of a givensubstance, there's more than one way to write a concentration.

Q: What is the difference between solvent and solution???

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

FormulaWeight:

It is assumed that you can calculate the formula or molecular weights of compounds from respective atomic weights of the elements forming these compounds. The formula weight (F.Wt) of a substance is the sum of the atomic weights of the elements from which this substance is formed from.

TheFormulaWeightorMolecularWeightofCuSO $4.5 \mathrm{H}_{2} \mathrm{O}$

Element	No.ofatoms	AtomicWeight
Cu	1	$1 \chi 63.54$
S	1	1×32.06
O	9	$9 \chi 16.00$
H	10	$10 \chi 1.00$
$\mathrm{~F} . \mathrm{Wt}$		$249.6 \mathrm{~g} / \mathrm{mol}$

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

Example:
Find the molecularweightofCaSO ${ }_{4.7} \mathbf{7 H 2 O}$

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

Mole: The Mole (symbol: mol) is the unit of measurement for amountof substance in the International System of Units (SI).

Alternativedefinitionofthemole: Theatomic, molecular,orformula

 weight of the substance, expressed in grams.Mole $=\frac{m(\mathrm{~g})}{F \cdot \mathrm{~W} t\left(\frac{g}{m o l}\right)}=\mathrm{mol}$
Where:m=mass(gram)
F.Wt=formulaweightormolecularweight(gram/mol). OR
$\mathrm{mmol}=\frac{m(\mathrm{mg})}{\text { F.Wtt }\left(\frac{\text { mg }}{m m o l}\right.} \mathrm{mmol}$

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

Example:

Find the number of g contained in 0.25 mol of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ($\mathrm{F} . \mathrm{W} t=159.7 \mathrm{~g} / \mathrm{mol}$)

Mole $=\frac{m(\mathrm{~g})}{F \cdot \mathrm{~W} t\left({ }_{\text {mol }}^{\text {g }}\right)}$
$0.25=\frac{m}{159.7} \longmapsto \mathrm{~m}=159.7(\mathrm{~g} / \mathrm{mol}) \chi 0.25 \mathrm{~mol}$ $\mathrm{m}(\mathrm{g})=39.9 \mathrm{~g}$

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

Mole:Itis thenumber of Avogadronumber of atom, molecule, electron and proton (6.022×10^{23}).

Mole $=\frac{N u}{N A}$
WhereNu=thenumberofmoleculesoratomsorelectrons.
$\mathrm{NA}=$ Avogadronumber $\left(6.022 \times 10^{23}\right)$.

Example:

Find the number of magnesium mole which contains $1.25 * 10^{23}$ atoms?

Mole $=\frac{N u}{N A}=\frac{1.25^{*} 10^{23}}{6.022^{*} 10^{23}}=0.2 \mathrm{~mol}$

Example:

Findthenumberof $\mathrm{H}_{2} \mathrm{Omoleculeswhichispresentin0.360}^{2}$ mol?

Mole $=\frac{N u}{N A}$
$0.360=\frac{N u}{6.022^{*} 10^{23}} \longrightarrow \mathrm{Nu}=0.360 * 6.022 * 10^{23}=2.1$ molecule

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

WaystoexpressConcentration

1- Molarity(M):numberofsolutemolesdissolvedinsolutionvolumes in liter.
$\mathrm{M}\left(\frac{\mathrm{mol}}{L}\right)=\frac{\text { No.ofmolesof solute }}{\text { Volumeof solution } L}=\frac{n(\mathrm{~mol})}{V(L)}=\frac{n(\mathrm{mmol})}{V(m L)}=\frac{\frac{m(\mathrm{~g})}{\mathrm{F} . \mathrm{Wt}(\mathrm{g})} \mathrm{mol}^{V(L)}}{V(\mathrm{~L})}=\frac{\mathrm{m}}{F . \mathrm{W} t^{*} V(L)}$

Example:

Findthemolarityofasolutionresultingfromdissolving1.26gof $\mathrm{AgNO}_{3}(\mathrm{~F} . \mathrm{Wt}=169.9 \mathrm{~g} / \mathrm{mol})$ inatotalvolumeof 250 mlsolution .

Mol $=\frac{m(\mathrm{~g})}{F . \mathrm{W} t\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right)}=\frac{1.26}{169.9}=7.42 * 10^{-3} \mathrm{~mol}$
$\mathrm{M}\left(\frac{\mathrm{mol}}{\mathrm{L}}\right)=\frac{n(\mathrm{~mol})}{V(L)}=\frac{7.42^{*} 10^{-3}}{0.25}=0.0297 \frac{\mathrm{~mol}}{\mathrm{~L}}$
OR
$\mathrm{M}\left(\frac{\mathrm{mol}}{\mathrm{L}}\right)=\frac{\mathrm{m}}{F . \mathrm{W} t^{*} V(L)}=\frac{1.26}{169.9^{*} 0.25}=0.0297 \frac{\mathrm{~mol}}{\mathrm{~L}}$
$\frac{250 \mathrm{ml}}{1000}=0.25 \mathrm{~L}$
OR
$\mathrm{M}\left(\frac{\mathrm{mol}}{L}\right)=\frac{m}{F . \mathrm{W} t} \chi \frac{1000}{V(m l)}$

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

2-Normality (N)

Can be defined as the number of equivalents of solute dissolved in $1 L$ $\boldsymbol{o f}$ solution. The number of equivalents, n , is based on a reaction unit, which is that part of a chemical species involved in a reaction. Gram equivalent weight is the measure of the (reactive capacity) of amolecule.
$N\left(\frac{e q}{L}\right)=\frac{\text { No.ofmolesofgmequivalents ofsolute }}{\text { Volumeofsolution } L}=\frac{E q(e q)}{V(L)}=\frac{\frac{m(g)}{E M_{(e q)}^{y}}}{V(L)}$ $N\left(\frac{e q}{L}\right)=$ Normality

Eq(eq) $=$ Numberofequivalents $={ }^{m(g)} \frac{}{E M \frac{g}{(e g)}}$
$\mathrm{EM}(\mathrm{g}) \underset{e q}{\operatorname{eq}}=$ Equivalent Weight $={ }^{F . \mathrm{W} t} \frac{}{\eta}$
$\eta=$ Numberofreactingunit

$$
N\left(\frac{e q}{L}\right)=\frac{m^{*} \eta}{F \cdot \mathrm{~W} t^{*} V}
$$

Al Mamoun University College
Laser and Optoelectronics Engineering Department
Chemistry

No.ofreplaceableH ${ }^{+}$
AlkaliNo.of
OHgroups
No.ofmetalionsvalency

3-Molality:

Itusedinthermodynamiccalculationswhereatemperature independent unit of concentration is needed.

Molarity

It measures the number of moles of a solute in I litre solution.
(Solvent is not considered.)

$$
M=\frac{n \text { of Solute }}{V \text { of Solution }}
$$

Molality

It measures the number of moles of a solute in

1 Kg solvent.
(Solvent is considered.)

$$
m=\frac{n \text { of Solute }}{\text { mass of Solvent }}
$$

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

4-Formality:

Thenumberofmolesofsolute,regardlessofchemicalform,perliter of solution (F).

5- Weight,Volume, andWeight-to-Volume Ratios:

Weight percent (\% w/w), volume percent ($\% \mathrm{v} / \mathrm{v}$) and weight-to-volume percent ($\% \mathrm{w} / \mathrm{v}$) express concentration as units of solute per 100 units of sample. A solution in which a solute has a concentration of $23 \% \mathrm{w} / \mathrm{v}$ contains 23 g of solute per 100 mL of solution.

Weightpercent:Gramsofsoluteper100gofsolution. (\% $w / w)$.

VolumePercent:Millilitersofsoluteper100mLof solution (\% v / v).
weight-to-volumepercent:Gramsofsoluteper100mLof solution (\% w/v).

Al Mamoun University College

Laser and Optoelectronics Engineering Department
Chemistry

