

Lecture Two

Marvam K. Hasan

2024-2023

1

ChapterTwo

ToolsofAnalyticalChemistry

Componentsofmatter
NumbersinAnalyticalChemistry
FundamentalUnitsof Measure
UnitsforExpressing Concentration
Molarity
Formality
Normality
Molality
Weight,Volume,andWeight-to-Volume
Ratios

Maryam K. Hasan

Components of matter

Matter: anythingthathasmassandtakes up space.

EveryMatteris consisting of basic units called molecules.

EachMoleculeis composed of smallest particles called "Atom".

Atom: smallest unit consist of a central nucleus that is surrounded by one or more negatively charged electrons.

Nucleus: consists of *subatomic particles* called *Protons*, which are *positively charged* and *neutrons*, which has *no charge* (*neutral*).

The positive charges equal the negative charges, so the atom has no overall charge; it is electrically neutral

Electron(e-): Itisnegativelycharged subatomic particle which its number is equal to the number of proton in a neutral atom.

Proton(P+): Itispositivelycharged subatomic particle which is more massive than electrons.

Neutron (N): It is neutral subatomic particles that have approximately the same mass of protons.

Atomicnumber=numberofprotons=numberofelectrons

Massnumber=No.ofprotons(Atomicnumber)+No.ofneutrons

Example:

Theatomicnumberofasodiumatomis11anditsmass numberis23. Calculate the number of protons, neutrons and electrons it contains

Theatomicnumberofsodiumis11.Everysodiumatomhas11protons and 11 electrons. Ithas11positivechargesand11negativecharges. Themassnumberofanatomisitstotalnumberofprotonsandneutrons. The atomic number of a sodium atom is 11 and its mass number is 23. Calculatethenumberofprotons, neutronsandelectronsitcontains. Number of protons = 11 Numberofelectrons= 11 Numberofneutrons(massnumber-atomicnumber) = 23-11= 12

> NumbersinAnalyticalChemistry

Analytical chemistry is inherently a quantitative science. Whether determining the concentration of a species in a solution, evaluating an equilibriumconstant, measuring a reaction rate, or drawing a correlation between a compound's structure and its reactivity, analytical chemists make measurements and perform calculations. In this section we briefly review several important topics involving the use of numbers in analytical chemistry.

FundamentalUnitsof Measure

Imagine that you find the following instructions in a laboratory procedure: "Transfer 1.5 of your sample to a 100 volumetric flask, and dilute to volume." How do you do this? Clearly these instructions are incomplete since the units of measurement are not stated. Compare this

withacompleteinstruction:"Transfer1.5gofyour sampletoa100-mL volumetric flask, and dilute to volume." This is an instruction that you can easily follow.Table (2.1)(Fundamental SI Units).For example, we measure the quantity of heat produced during a chemical reaction in Joules,(J),where

$$1 J = 1 \frac{m^2 kg}{s^2}$$

Table 2.1 Fundamental SI Units		
Measurement	Unit	Symbol
mass	kilogram	kg
volume	liter	L
distance	meter	m
temperature	kelvin	K
time	second	S
current	ampere	А
amount of substance	e mole	mol

Table(2.1)(FundamentalSI Units)

Maryam K. Hasan

> UnitsforExpressing Concentration

Concentration:isageneralmeasurementunitstatingtheamountof solute present in a known amount of solution.

Although the terms "solute" and "solution" are often associated with liquid samples, they can be extended to gas-phase and solid-phase samples as well. The actual units for reporting concentration depend on how the amounts of solute and solution are measured.

*Solution:*isahomogenousmixtureof2ormoresubstances.

*Solute:*isthesubstancepresentinthesmalleramount(s).

Solvent: is the substance present in the large ramount.

Since there are different ways for expressing the **"amount"** of a given substance, there's more than one way to write a **concentration**.

Q: What is the difference between solvent and solution???

FormulaWeight:

It is assumed that you can calculate the formula or molecular weights of compounds from respective atomic weights of the elements forming these compounds. The formula weight (F.Wt) of a substance *is the sum of the atomic weights of the elements from which this substance is formed from*.

Element	No.ofatoms	AtomicWeight
Cu	1	1χ 63.54
S	1	1χ32.06
0	9	9χ16.00
Н	10	10χ1.00
F.Wt		249.6g/mol

TheFormulaWeightorMolecularWeightofCuSO₄.5H₂O

Example:

Find the molecularweightofCaSO₄.7H2O

<u>*Mole*</u>: The Mole (symbol: mol) is the unit of measurement for amount of substance in the International System of Units (SI).

<u>Alternativedefinitionofthemole</u>: Theatomic, molecular, or formula weight of the substance, expressed in grams.

Mole= $\frac{m(g)}{F.Wt(\frac{g}{mol})}$ =mol

Where:m=mass(gram)

F.Wt=formulaweightormolecularweight(gram/mol). OR

 $mmol = \frac{m(mg)}{F.Wt(\frac{mg}{mmol})} mmol$

Example:

Find the number of g contained in 0.25 mol of Fe₂O₃ (F.Wt=159.7 g/mol)

<u>*Mole:*</u> It is the number of Avogadronumber of atom, molecule, electron and proton (6.022 x 10^{23}).

Mole= $\frac{Nu}{NA}$

Where Nu = the number of molecules or atoms or electrons.

NA=Avogadronumber(6.022x10²³).

Example:

<mark>Find the number of magnesium mole which contains</mark> 1.25*10²³atoms?

$$Mole = \frac{Nu}{NA} = \frac{1.25 \times 10^{23}}{6.022 \times 10^{23}} = 0.2 \text{mol}$$

Example:

FindthenumberofH2Omoleculeswhichispresentin0.360 mol?

Mole=
$$\frac{Nu}{NA}$$

 $0.360 = \frac{Nu}{6.022^{*}10^{23}}$ Nu=0.360*6.022*10²³=2.1molecule

Marvam K. Hasan

WaystoexpressConcentration

1- Molarity(M) number of solutemoles dissolved insolution volumes in liter.

 $\mathbf{M}(\frac{mol}{L}) = \frac{No.ofmolesofsolute}{VolumeofsolutionL} = \frac{n(mol)}{V(L)} = \frac{n(mmol)}{V(mL)} = \frac{\frac{m(g)}{F.Wt(\frac{g}{M})}}{V(L)} = \frac{m}{F.Wt^*V(L)}$

Example:

Findthemolarityofasolutionresultingfromdissolving1.26gof AgNO₃(F.Wt=169.9g/mol)inatotalvolumeof250mlsolution.

$$Mol = \frac{m(g)}{F.Wt(\frac{g}{mol})} = \frac{1.26}{169.9} = 7.42 \times 10^{-3} mol$$
$$M(\frac{mol}{L}) = \frac{n(mol)}{V(L)} = \frac{7.42 \times 10^{-3}}{0.25} = 0.0297 \frac{mol}{L}$$

OR

$$M(\frac{mol}{L}) = \frac{m}{F.Wt^*V(L)} = \frac{1.26}{169.9^*0.25} = 0.0297 \quad \frac{mol}{L}$$

OR

$$M(\frac{mol}{L}) = \frac{m}{F.Wt} \chi \frac{1000}{V(ml)}$$

Marvam K. Hasan

L

2024-2023

^{250*ml*=0.25L 1000}

2-Normality(N)

Can be defined as the number of equivalents of solute dissolved in 1 L of solution. The number of equivalents, n, is based on a reaction unit, which is that part of a chemical species involved in a reaction. Gram equivalent weight is the measure of the (*reactive capacity*) of amolecule.

 $N(\frac{eq}{L}) = \frac{No.ofmolesofgmequivalents of solute}{Volume of solutionL}} = \frac{Eq(eq)}{V(L)} = \frac{\frac{m(g)}{EM^{\frac{d}{2}}}}{V(L)}}{V(L)}$ $N(\frac{eq}{L}) = Normality$ $Eq(eq) = Numberofequivalents = \frac{m(g)}{EM\frac{g}{(eg)}}$ $EM(\frac{g}{eq}) = Equivalent Weight = \frac{F.Wt}{\eta}$

 η =Numberofreactingunit

$$N(\frac{eq}{L}) = \frac{m^*\eta}{F.Wt^*V}$$

Maryam K. Hasan

3- Molality:

Itusedinthermodynamiccalculationswhereatemperature independent unit of concentration is needed.

Molarity

It measures the number of moles of a solute in I litre solution.

(Solvent is not considered.)

 $M = \frac{n \text{ of Solute}}{V \text{ of Solution}}$

Molality

It measures the number of moles of a solute in I Kg solvent.

(Solvent is considered.)

 $m = \frac{n \text{ of Solute}}{mass \text{ of Solvent}}$

4- Formality:

The number of moles of solute, regardless of chemical form, perliter of solution (F).

5-Weight, Volume, and Weight-to-Volume Ratios:

Weight percent (% w/w), volume percent (% v/v) and weight-to-volume percent (% w/v) express concentration as units of solute per 100 units of sample. A solution in which a solute has a concentration of 23% w/v contains 23 g of solute per 100 mL of solution.

Weightpercent:*Gramsofsoluteper100gofsolution*. (% *w/w*).

VolumePercent:*Millilitersofsoluteper100mLof solution* (% v/v).

weight-to-volumepercent:Gramsofsoluteper100mLof solution
(% w/v).

Maryam K. Hasan

Maryam K. Hasan