## Measurement

## 1-1 measuring things, including lengths

## Learning Objectives

After reading this module, you should be able to . . .
1.01 Identify the base quantities in the SI system.
1.02 Name the most frequently used prefixes for SI units.

## Key Ideas

- Physics is based on measurement of physical quantities. Certain physical quantities have been chosen as base quantities (such as length, time, and mass); each has been defined in terms of a standard and given a unit of measure (such as meter, second, and kilogram). Other physical quantities are defined in terms of the base quantities and their standards and units.
- The unit system emphasized in this book is the International System of Units (SI). The three physical quantities displayed in Table 1-1 are used in the early chapters. Standards, which must be both accessible and invariable, have been established for these base quantities by international agreement.
1.03 Change units (here for length, area, and volume) by using chain-link conversions.
1.04 Explain that the meter is defined in terms of the speed of light in vacuum.

These standards are used in all physical measurement, for both the base quantities and the quantities derived from them. Scientific notation and the prefixes of Table 1-2 are used to simplify measurement notation.

- Conversion of units may be performed by using chain-link conversions in which the original data are multiplied successively by conversion factors written as unity and the units are manipulated like algebraic quantities until only the desired units remain.
- The meter is defined as the distance traveled by light during a precisely specified time interval.


## What Is Physics?

Science and engineering are based on measurements and comparisons. Thus, we need rules about how things are measured and compared, and we need experiments to establish the units for those measurements and comparisons. One purpose of physics (and engineering) is to design and conduct those experiments.

For example, physicists strive to develop clocks of extreme accuracy so that any time or time interval can be precisely determined and compared. You may wonder whether such accuracy is actually needed or worth the effort. Here is one example of the worth: Without clocks of extreme accuracy, the Global Positioning System (GPS) that is now vital to worldwide navigation would be useless.

## Measuring Things

We discover physics by learning how to measure the quantities involved in physics. Among these quantities are length, time, mass, temperature, pressure, and electric current.

We measure each physical quantity in its own units, by comparison with a standard. The unit is a unique name we assign to measures of that quantity-for example, meter (m) for the quantity length. The standard corresponds to exactly 1.0 unit of the quantity. As you will see, the standard for length, which corresponds

Table 1-1 Units for Three SI
Base Quantities

| Quantity | Unit Name | Unit Symbol |
| :--- | :--- | :---: |
| Length | meter | m |
| Time | second | s |
| Mass | kilogram | kg |

Table 1-2 Prefixes for SI Units

| Factor | Prefix $^{a}$ | Symbol |
| :--- | :--- | :---: |
| $10^{24}$ | yotta- | Y |
| $10^{21}$ | zetta- | Z |
| $10^{18}$ | exa- | E |
| $10^{15}$ | peta- | P |
| $10^{12}$ | tera- | T |
| $\mathbf{1 0}^{\mathbf{9}}$ | giga- | $\mathbf{G}$ |
| $\mathbf{1 0}^{6}$ | mega- | $\mathbf{M}$ |
| $\mathbf{1 0}^{\mathbf{3}}$ | kilo- | $\mathbf{k}$ |
| $10^{2}$ | hecto- | h |
| $10^{1}$ | deka- | da |
| $10^{-1}$ | deci- | d |
| $\mathbf{1 0}^{-\mathbf{2}}$ | centi- | $\mathbf{c}$ |
| $\mathbf{1 0}^{-\mathbf{3}}$ | milli- | $\mathbf{m}$ |
| $\mathbf{1 0}^{-6}$ | micro- | $\mathbf{\mu}$ |
| $\mathbf{1 0}^{-9}$ | nano- | $\mathbf{n}$ |
| $\mathbf{1 0}^{-\mathbf{1 2}}$ | pico- | $\mathbf{p}$ |
| $10^{-15}$ | femto- | f |
| $10^{-18}$ | atto- | a |
| $10^{-21}$ | zepto- | Z |
| $10^{-24}$ | yocto- | y |

${ }^{a}$ The most frequently used prefixes are shown in bold type.
to exactly 1.0 m , is the distance traveled by light in a vacuum during a certain fraction of a second. We can define a unit and its standard in any way we care to. However, the important thing is to do so in such a way that scientists around the world will agree that our definitions are both sensible and practical.

Once we have set up a standard—say, for length—we must work out procedures by which any length whatever, be it the radius of a hydrogen atom, the wheelbase of a skateboard, or the distance to a star, can be expressed in terms of the standard. Rulers, which approximate our length standard, give us one such procedure for measuring length. However, many of our comparisons must be indirect. You cannot use a ruler, for example, to measure the radius of an atom or the distance to a star.

Base Quantities. There are so many physical quantities that it is a problem to organize them. Fortunately, they are not all independent; for example, speed is the ratio of a length to a time. Thus, what we do is pick out-by international agree-ment-a small number of physical quantities, such as length and time, and assign standards to them alone. We then define all other physical quantities in terms of these base quantities and their standards (called base standards). Speed, for example, is defined in terms of the base quantities length and time and their base standards.

Base standards must be both accessible and invariable. If we define the length standard as the distance between one's nose and the index finger on an outstretched arm, we certainly have an accessible standard-but it will, of course, vary from person to person. The demand for precision in science and engineering pushes us to aim first for invariability. We then exert great effort to make duplicates of the base standards that are accessible to those who need them.

## The International System of Units

In 1971, the 14th General Conference on Weights and Measures picked seven quantities as base quantities, thereby forming the basis of the International System of Units, abbreviated SI from its French name and popularly known as the metric system. Table 1-1 shows the units for the three base quantities-length, mass, and time-that we use in the early chapters of this book. These units were defined to be on a "human scale."

Many SI derived units are defined in terms of these base units. For example, the SI unit for power, called the watt (W), is defined in terms of the base units for mass, length, and time. Thus, as you will see in Chapter 7,

$$
\begin{equation*}
1 \mathrm{watt}=1 \mathrm{~W}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}, \tag{1-1}
\end{equation*}
$$

where the last collection of unit symbols is read as kilogram-meter squared per second cubed.

To express the very large and very small quantities we often run into in physics, we use scientific notation, which employs powers of 10 . In this notation,

$$
\begin{align*}
& 3560000000 \mathrm{~m}=3.56 \times 10^{9} \mathrm{~m}  \tag{1-2}\\
& 0.000000492 \mathrm{~s}=4.92 \times 10^{-7} \mathrm{~s} \tag{1-3}
\end{align*}
$$

Scientific notation on computers sometimes takes on an even briefer look, as in 3.56 E 9 and $4.92 \mathrm{E}-7$, where E stands for "exponent of ten." It is briefer still on some calculators, where $E$ is replaced with an empty space.

As a further convenience when dealing with very large or very small measurements, we use the prefixes listed in Table 1-2. As you can see, each prefix represents a certain power of 10 , to be used as a multiplication factor. Attaching a prefix to an SI unit has the effect of multiplying by the associated factor. Thus, we can express a particular electric power as

$$
\begin{equation*}
1.27 \times 10^{9} \text { watts }=1.27 \text { gigawatts }=1.27 \mathrm{GW} \tag{1-4}
\end{equation*}
$$

or a particular time interval as

$$
\begin{equation*}
2.35 \times 10^{-9} \mathrm{~s}=2.35 \text { nanoseconds }=2.35 \mathrm{~ns} \tag{1-5}
\end{equation*}
$$

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are probably familiar to you.

## Changing Units

We often need to change the units in which a physical quantity is expressed. We do so by a method called chain-link conversion. In this method, we multiply the original measurement by a conversion factor (a ratio of units that is equal to unity). For example, because 1 min and 60 s are identical time intervals, we have

$$
\frac{1 \mathrm{~min}}{60 \mathrm{~s}}=1 \quad \text { and } \quad \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=1
$$

Thus, the ratios $(1 \mathrm{~min}) /(60 \mathrm{~s})$ and $(60 \mathrm{~s}) /(1 \mathrm{~min})$ can be used as conversion factors. This is not the same as writing $\frac{1}{60}=1$ or $60=1$; each number and its unit must be treated together.

Because multiplying any quantity by unity leaves the quantity unchanged, we can introduce conversion factors wherever we find them useful. In chain-link conversion, we use the factors to cancel unwanted units. For example, to convert 2 min to seconds, we have

$$
\begin{equation*}
2 \min =(2 \min )(1)=(2 \min )\left(\frac{60 \mathrm{~s}}{1 \min }\right)=120 \mathrm{~s} \tag{1-6}
\end{equation*}
$$

If you introduce a conversion factor in such a way that unwanted units do not cancel, invert the factor and try again. In conversions, the units obey the same algebraic rules as variables and numbers.

Appendix D gives conversion factors between SI and other systems of units, including non-SI units still used in the United States. However, the conversion factors are written in the style of " $1 \mathrm{~min}=60 \mathrm{~s}$ " rather than as a ratio. So, you need to decide on the numerator and denominator in any needed ratio.

## Length

In 1792, the newborn Republic of France established a new system of weights and measures. Its cornerstone was the meter, defined to be one ten-millionth of the distance from the north pole to the equator. Later, for practical reasons, this Earth standard was abandoned and the meter came to be defined as the distance between two fine lines engraved near the ends of a platinum-iridium bar, the standard meter bar, which was kept at the International Bureau of Weights and Measures near Paris. Accurate copies of the bar were sent to standardizing laboratories throughout the world. These secondary standards were used to produce other, still more accessible standards, so that ultimately every measuring device derived its authority from the standard meter bar through a complicated chain of comparisons.

Eventually, a standard more precise than the distance between two fine scratches on a metal bar was required. In 1960, a new standard for the meter, based on the wavelength of light, was adopted. Specifically, the standard for the meter was redefined to be 1650763.73 wavelengths of a particular orange-red light emitted by atoms of krypton-86 (a particular isotope, or type, of krypton) in a gas discharge tube that can be set up anywhere in the world. This awkward number of wavelengths was chosen so that the new standard would be close to the old meter-bar standard.

Table 1-3 Some Approximate Lengths
Measurement Length in Meters

Distance to the first galaxies formed
$2 \times 10^{26}$
Distance to the
Andromeda galaxy
$2 \times 10^{22}$
Distance to the nearby star Proxima Centauri Distance to Pluto
$4 \times 10^{16}$
Distance to Pluto $\quad 6 \times 10^{12}$
Radius of Earth $\quad 6 \times 10^{6}$
Height of Mt. Everest $\quad 9 \times 10^{3}$
Thickness of this page $\quad 1 \times 10^{-4}$
Length of a typical virus $\quad 1 \times 10^{-8}$

Radius of a hydrogen atom $\quad 5 \times 10^{-11}$
Radius of a proton $\quad 1 \times 10^{-15}$

By 1983, however, the demand for higher precision had reached such a point that even the krypton- 86 standard could not meet it, and in that year a bold step was taken. The meter was redefined as the distance traveled by light in a specified time interval. In the words of the 17th General Conference on Weights and Measures:

The meter is the length of the path traveled by light in a vacuum during a time interval of 1/299 792458 of a second.

This time interval was chosen so that the speed of light $c$ is exactly

$$
c=299792458 \mathrm{~m} / \mathrm{s} .
$$

Measurements of the speed of light had become extremely precise, so it made sense to adopt the speed of light as a defined quantity and to use it to redefine the meter.

Table 1-3 shows a wide range of lengths, from that of the universe (top line) to those of some very small objects.

## Significant Figures and Decimal Places

Suppose that you work out a problem in which each value consists of two digits. Those digits are called significant figures and they set the number of digits that you can use in reporting your final answer. With data given in two significant figures, your final answer should have only two significant figures. However, depending on the mode setting of your calculator, many more digits might be displayed. Those extra digits are meaningless.

In this book, final results of calculations are often rounded to match the least number of significant figures in the given data. (However, sometimes an extra significant figure is kept.) When the leftmost of the digits to be discarded is 5 or more, the last remaining digit is rounded up; otherwise it is retained as is. For example, 11.3516 is rounded to three significant figures as 11.4 and 11.3279 is rounded to three significant figures as 11.3 . (The answers to sample problems in this book are usually presented with the symbol $=$ instead of $\approx$ even if rounding is involved.)

When a number such as 3.15 or $3.15 \times 10^{3}$ is provided in a problem, the number of significant figures is apparent, but how about the number 3000? Is it known to only one significant figure $\left(3 \times 10^{3}\right)$ ? Or is it known to as many as four significant figures $\left(3.000 \times 10^{3}\right)$ ? In this book, we assume that all the zeros in such given numbers as 3000 are significant, but you had better not make that assumption elsewhere.

Don't confuse significant figures with decimal places. Consider the lengths $35.6 \mathrm{~mm}, 3.56 \mathrm{~m}$, and 0.00356 m . They all have three significant figures but they have one, two, and five decimal places, respectively.

## Sample Problem 1.01 Estimating order of magnitude, ball of string

The world's largest ball of string is about 2 m in radius. To the nearest order of magnitude, what is the total length $L$ of the string in the ball?

## KEY IDEA

We could, of course, take the ball apart and measure the total length $L$, but that would take great effort and make the
ball's builder most unhappy. Instead, because we want only the nearest order of magnitude, we can estimate any quantities required in the calculation.

Calculations: Let us assume the ball is spherical with radius $R=2 \mathrm{~m}$. The string in the ball is not closely packed (there are uncountable gaps between adjacent sections of string). To allow for these gaps, let us somewhat overestimate
the cross-sectional area of the string by assuming the cross section is square, with an edge length $d=4 \mathrm{~mm}$. Then, with a cross-sectional area of $d^{2}$ and a length $L$, the string occupies a total volume of

$$
V=(\text { cross-sectional area })(\text { length })=d^{2} L .
$$

This is approximately equal to the volume of the ball, given by $\frac{4}{3} \pi R^{3}$, which is about $4 R^{3}$ because $\pi$ is about 3 . Thus, we have the following

$$
\begin{aligned}
d^{2} L & =4 R^{3}, \\
\text { or } \quad L=\frac{4 R^{3}}{d^{2}} & =\frac{4(2 \mathrm{~m})^{3}}{\left(4 \times 10^{-3} \mathrm{~m}\right)^{2}} \\
& =2 \times 10^{6} \mathrm{~m} \approx 10^{6} \mathrm{~m}=10^{3} \mathrm{~km} .
\end{aligned}
$$

(Answer)
(Note that you do not need a calculator for such a simplified calculation.) To the nearest order of magnitude, the ball contains about 1000 km of string!

PLUS Additional examples, video, and practice available at WileyPLUS

## 1-2 time

## Learning Objectives

After reading this module, you should be able to ...
1.05 Change units for time by using chain-link conversions.
1.06 Use various measures of time, such as for motion or as determined on different clocks.

## Key Idea

- The second is defined in terms of the oscillations of light emitted by an atomic (cesium-133) source. Accurate time
signals are sent worldwide by radio signals keyed to atomic clocks in standardizing laboratories.


## Time

Time has two aspects. For civil and some scientific purposes, we want to know the time of day so that we can order events in sequence. In much scientific work, we want to know how long an event lasts. Thus, any time standard must be able to answer two questions: "When did it happen?" and "What is its duration?" Table $1-4$ shows some time intervals.

Any phenomenon that repeats itself is a possible time standard. Earth's rotation, which determines the length of the day, has been used in this way for centuries; Fig. 1-1 shows one novel example of a watch based on that rotation. A quartz clock, in which a quartz ring is made to vibrate continuously, can be calibrated against Earth's rotation via astronomical observations and used to measure time intervals in the laboratory. However, the calibration cannot be carried out with the accuracy called for by modern scientific and engineering technology.

Table 1-4 Some Approximate Time Intervals

| Measurement Ti | Time Interval in Seconds | Measurement Ti | Time Interval in Seconds |
| :---: | :---: | :---: | :---: |
| Lifetime of the proton (predicted) | $3 \times 10^{40}$ | Time between human heartbeats Lifetime of the muon | $8 \times 10^{-1}$ |
|  |  |  | $2 \times 10^{-6}$ |
| Age of the universe | $5 \times 10^{17}$ | Shortest lab light pulse | $1 \times 10^{-16}$ |
| Age of the pyramid of Cheops | ps $1 \times 10^{11}$ | Lifetime of the most |  |
| Human life expectancy | $2 \times 10^{9}$ | unstable particle | $1 \times 10^{-23}$ |
| Length of a day | $9 \times 10^{4}$ | The Planck time ${ }^{a}$ | $1 \times 10^{-43}$ |

${ }^{a}$ This is the earliest time after the big bang at which the laws of physics as we know them can be applied.


Figure 1-1 When the metric system was proposed in 1792, the hour was redefined to provide a 10 -hour day. The idea did not catch on. The maker of this 10 -hour watch wisely provided a small dial that kept conventional 12-hour time. Do the two dials indicate the same time?


To meet the need for a better time standard, atomic clocks have been developed. An atomic clock at the National Institute of Standards and Technology (NIST) in Boulder, Colorado, is the standard for Coordinated Universal Time (UTC) in the United States. Its time signals are available by shortwave radio (stations WWV and WWVH) and by telephone (303-499-7111). Time signals (and related information) are also available from the United States Naval Observatory at website http://tycho.usno.navy.mil/time.html. (To set a clock extremely accurately at your particular location, you would have to account for the travel time required for these signals to reach you.)

Figure 1-2 shows variations in the length of one day on Earth over a 4 -year period, as determined by comparison with a cesium (atomic) clock. Because the variation displayed by Fig. 1-2 is seasonal and repetitious, we suspect the rotating Earth when there is a difference between Earth and atom as timekeepers. The variation is

Figure 1-2 Variations in the length of the day over a 4 -year period. Note that the entire vertical scale amounts to only 3 ms ( $=0.003 \mathrm{~s}$ ).
due to tidal effects caused by the Moon and to large-scale winds.

The 13th General Conference on Weights and Measures in 1967 adopted a standard second based on the cesium clock:

One second is the time taken by 9192631770 oscillations of the light (of a specified wavelength) emitted by a cesium- 133 atom.

Atomic clocks are so consistent that, in principle, two cesium clocks would have to run for 6000 years before their readings would differ by more than 1 s . Even such accuracy pales in comparison with that of clocks currently being developed; their precision may be 1 part in $10^{18}$-that is, 1 s in $1 \times 10^{18} \mathrm{~s}$ (which is about $3 \times 10^{10} \mathrm{y}$ ).

## 1-3 mass

## Learning Objectives

After reading this module, you should be able to ...
1.07 Change units for mass by using chain-link conversions.
1.08 Relate density to mass and volume when the mass is uniformly distributed.

## Key Ideas

- The kilogram is defined in terms of a platinum-iridium standard mass kept near Paris. For measurements on an atomic scale, the atomic mass unit, defined in terms of the atom carbon-12, is usually used.

The density $\rho$ of a material is the mass per unit volume:

$$
\rho=\frac{m}{V}
$$

## Mass

## The Standard Kilogram

The SI standard of mass is a cylinder of platinum and iridium (Fig. 1-3) that is kept at the International Bureau of Weights and Measures near Paris and assigned, by

Figure 1-3 The international 1 kg standard of mass, a platinum-iridium cylinder 3.9 cm in height and in diameter.

international agreement, a mass of 1 kilogram. Accurate copies have been sent to standardizing laboratories in other countries, and the masses of other bodies can be determined by balancing them against a copy. Table $1-5$ shows some masses expressed in kilograms, ranging over about 83 orders of magnitude.

The U.S. copy of the standard kilogram is housed in a vault at NIST. It is removed, no more than once a year, for the purpose of checking duplicate copies that are used elsewhere. Since 1889, it has been taken to France twice for recomparison with the primary standard.

## A Second Mass Standard

The masses of atoms can be compared with one another more precisely than they can be compared with the standard kilogram. For this reason, we have a second mass standard. It is the carbon-12 atom, which, by international agreement, has been assigned a mass of 12 atomic mass units (u). The relation between the two units is

$$
\begin{equation*}
1 \mathrm{u}=1.66053886 \times 10^{-27} \mathrm{~kg} \tag{1-7}
\end{equation*}
$$

with an uncertainty of $\pm 10$ in the last two decimal places. Scientists can, with reasonable precision, experimentally determine the masses of other atoms relative to the mass of carbon- 12 . What we presently lack is a reliable means of extending that precision to more common units of mass, such as a kilogram.

## Density

As we shall discuss further in Chapter 14, density $\rho$ (lowercase Greek letter rho) is the mass per unit volume:

$$
\begin{equation*}
\rho=\frac{m}{V} \tag{1-8}
\end{equation*}
$$

Densities are typically listed in kilograms per cubic meter or grams per cubic centimeter. The density of water ( 1.00 gram per cubic centimeter) is often used as a comparison. Fresh snow has about $10 \%$ of that density; platinum has a density that is about 21 times that of water.

Table 1-5 Some Approximate Masses

| Object | Mass in <br> Kilograms |
| :--- | :---: |
| Known universe | $1 \times 10^{53}$ |
| Our galaxy | $2 \times 10^{41}$ |
| Sun | $2 \times 10^{30}$ |
| Moon | $7 \times 10^{22}$ |
| Asteroid Eros | $5 \times 10^{15}$ |
| Small mountain | $1 \times 10^{12}$ |
| Ocean liner | $7 \times 10^{7}$ |
| Elephant | $5 \times 10^{3}$ |
| Grape | $3 \times 10^{-3}$ |
| Speck of dust | $7 \times 10^{-10}$ |
| Penicillin molecule | $5 \times 10^{-17}$ |
| Uranium atom | $4 \times 10^{-25}$ |
| Proton | $2 \times 10^{-27}$ |
| Electron | $9 \times 10^{-31}$ |

## Sample Problem 1.02 Density and liquefaction

A heavy object can sink into the ground during an earthquake if the shaking causes the ground to undergo liquefaction, in which the soil grains experience little friction as they slide over one another. The ground is then effectively quicksand. The possibility of liquefaction in sandy ground can be predicted in terms of the void ratio $e$ for a sample of the ground:

$$
\begin{equation*}
e=\frac{V_{\text {voids }}}{V_{\text {grains }}} . \tag{1-9}
\end{equation*}
$$

Here, $V_{\text {grains }}$ is the total volume of the sand grains in the sample and $V_{\text {voids }}$ is the total volume between the grains (in the voids). If $e$ exceeds a critical value of 0.80 , liquefaction can occur during an earthquake. What is the corresponding sand density $\rho_{\text {sand }}$ ? Solid silicon dioxide (the primary component of sand) has a density of $\rho_{\mathrm{SiO}_{2}}=2.600 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

## KEY IDEA

The density of the sand $\rho_{\text {sand }}$ in a sample is the mass per unit volume - that is, the ratio of the total mass $m_{\text {sand }}$ of the sand grains to the total volume $V_{\text {total }}$ of the sample:

$$
\begin{equation*}
\rho_{\text {sand }}=\frac{m_{\text {sand }}}{V_{\text {total }}} \tag{1-10}
\end{equation*}
$$

Calculations: The total volume $V_{\text {total }}$ of a sample is

$$
V_{\text {total }}=V_{\text {grains }}+V_{\text {voids. }} .
$$

Substituting for $V_{\text {voids }}$ from Eq. 1-9 and solving for $V_{\text {grains }}$ lead to

$$
\begin{equation*}
V_{\text {grains }}=\frac{V_{\text {total }}}{1+e} \tag{1-11}
\end{equation*}
$$

From Eq. 1-8, the total mass $m_{\text {sand }}$ of the sand grains is the product of the density of silicon dioxide and the total volume of the sand grains:

$$
\begin{equation*}
m_{\text {sand }}=\rho_{\mathrm{SiO}_{2}} V_{\text {grains }} . \tag{1-12}
\end{equation*}
$$

Substituting this expression into Eq. 1-10 and then substituting for $V_{\text {grains }}$ from Eq. 1-11 lead to

$$
\begin{equation*}
\rho_{\mathrm{sand}}=\frac{\rho_{\mathrm{SiO}_{2}}}{V_{\text {total }}} \frac{V_{\text {total }}}{1+e}=\frac{\rho_{\mathrm{SiO}_{2}}}{1+e} . \tag{1-13}
\end{equation*}
$$

Substituting $\rho_{\mathrm{SiO}_{2}}=2.600 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and the critical value of $e=0.80$, we find that liquefaction occurs when the sand density is less than

$$
\begin{equation*}
\rho_{\text {sand }}=\frac{2.600 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}{1.80}=1.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} . \tag{Answer}
\end{equation*}
$$

A building can sink several meters in such liquefaction.

## 8eview \& Summary

Measurement in Physics Physics is based on measurement of physical quantities. Certain physical quantities have been chosen as base quantities (such as length, time, and mass); each has been defined in terms of a standard and given a unit of measure (such as meter, second, and kilogram). Other physical quantities are defined in terms of the base quantities and their standards and units.

SI Units The unit system emphasized in this book is the International System of Units (SI). The three physical quantities displayed in Table 1-1 are used in the early chapters. Standards, which must be both accessible and invariable, have been established for these base quantities by international agreement. These standards are used in all physical measurement, for both the base quantities and the quantities derived from them. Scientific notation and the prefixes of Table 1-2 are used to simplify measurement notation.

Changing Units Conversion of units may be performed by using chain-link conversions in which the original data are multiplied
successively by conversion factors written as unity and the units are manipulated like algebraic quantities until only the desired units remain.

Length The meter is defined as the distance traveled by light during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light emitted by an atomic (cesium-133) source. Accurate time signals are sent worldwide by radio signals keyed to atomic clocks in standardizing laboratories.

Mass The kilogram is defined in terms of a platinumiridium standard mass kept near Paris. For measurements on an atomic scale, the atomic mass unit, defined in terms of the atom carbon- 12 , is usually used.

Density The density $\rho$ of a material is the mass per unit volume:

$$
\begin{equation*}
\rho=\frac{m}{V} . \tag{1-8}
\end{equation*}
$$

## Problems



## Module 1-1 Measuring Things, Including Lengths

$\cdot 1$ SSM Earth is approximately a sphere of radius $6.37 \times 10^{6} \mathrm{~m}$. What are (a) its circumference in kilometers, (b) its surface area in square kilometers, and (c) its volume in cubic kilometers?
-2 A gry is an old English measure for length, defined as $1 / 10$ of a line, where line is another old English measure for length, defined as $1 / 12$ inch. A common measure for length in the publishing business is a point, defined as $1 / 72$ inch. What is an area of 0.50 gry $^{2}$ in points squared (points ${ }^{2}$ )?
-3 The micrometer ( $1 \mu \mathrm{~m}$ ) is often called the micron. (a) How
many microns make up 1.0 km ? (b) What fraction of a centimeter equals $1.0 \mu \mathrm{~m}$ ? (c) How many microns are in 1.0 yd ?
-4 Spacing in this book was generally done in units of points and picas: 12 points $=1$ pica, and 6 picas $=1$ inch. If a figure was misplaced in the page proofs by 0.80 cm , what was the misplacement in (a) picas and (b) points?
-5 SSM Www Horses are to race over a certain English meadow for a distance of 4.0 furlongs. What is the race distance in (a) rods and (b) chains? (1 furlong $=201.168 \mathrm{~m}, 1 \operatorname{rod}=5.0292 \mathrm{~m}$, and 1 chain $=20.117 \mathrm{~m}$.)

