2- D.C Voltmeter:

A voltmeter is always connected in parallel with the element being measured and measures the voltage between the points across which it's connected. Most d.c voltmeters employ a PMMC meter with a series resistor as shown. The series resistance should be much larger than the impedance of the circuit being measured, and they are usually much larger than R_{m}.
$R s=R_{T}-R m$
$R s=\frac{V_{\text {range }}}{\mathrm{Im}}-R m$
$\mathrm{Im}=\mathrm{I}_{\mathrm{FSD}}$
The ohm/volt sensitivity of a voltmeter Is given by:

$$
S_{v}=\frac{R m}{V_{F S D}}=\frac{1}{I_{F S D}}=\frac{\Omega}{V} \text { rating }
$$

$$
S_{\text {Range }}=\frac{R m+R s}{V_{\text {Range }}}=\frac{1}{I_{\text {Range }}}=\frac{\Omega}{V}
$$

So the internal resistance of the voltmeter or the input resistance of the voltmeter is
$\mathrm{R}_{\mathrm{v}}=\mathrm{V}_{\mathrm{FSD}} \mathrm{X}$ sensitivity

Example:

We have a micro ammeter and we wish to adapted it to measure 1 volt full scale, the meter has an internal resistance of 100Ω and $\mathrm{I}_{\mathrm{FSD}}$ of $100 \mu \mathrm{~A}$.

Sol:-
$R s=\frac{V}{\mathrm{Im}}-R m \quad \quad$ ss $=\frac{1}{0.0001}-100=9900 \Omega=9.9 \mathrm{~K} \Omega$
So we connect with PMMC meter a series resistance of $9.9 \mathrm{~K} \Omega$ to convert it to a voltmeter

Extension of Voltmeter Range:

The voltage range of dec voltmeter can be further extended by a number of series resistance selected by a range switch; such a voltmeter is called a multirange voltmeter.

a) Direct D.c Voltmeter Method:

In this method, each series resistance of multirange voltmeter is connected indirect with PMMC meter to give the desired range.

$$
R s_{*}=\frac{V_{*}}{\mathrm{Im}}-R m
$$

b) Indirect D.c Voltmeter Method:

In this method, one or more series resistances of the multirange voltmeter are connected with PMMC meter to give the desired range.

$$
\begin{aligned}
& R s 1=\frac{V 1}{I m}-R m \\
& R s 2=\frac{V 2-V 1}{I m} \\
& R s 3=\frac{V 3-V 2}{I m}
\end{aligned}
$$

Example (1):
A basic d'Arsonval movement with an internal resistance of 100Ω and half-scale current deflection of 0.5 mA is to be converted by indirect method into a multirange d.c voltmeter with voltages ranges of $10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}$, and 500 V .

Sol:

$$
\overline{I_{\mathrm{FSD}}}=\mathrm{I}_{\mathrm{HSD}} \times 2
$$

$$
\mathrm{I}_{\mathrm{FSD}}=0.5 \mathrm{~mA} \times 2=1 \mathrm{~mA}
$$

$$
R s 1=\frac{V 1}{\operatorname{Im}}-R m
$$

$$
R s 1=\frac{10}{1 m A}-100=9.9 K \Omega
$$

$$
R s 2=\frac{V 2-V 1}{\operatorname{Im}}
$$

$$
R s 2=\frac{50-10}{1 \times 10^{-3}}=40 \mathrm{~K} \Omega
$$

$$
R s 3=\frac{250-50}{1 \times 10^{-3}}=200 \mathrm{~K} \Omega
$$

$R s 4=\frac{500-250}{1 \times 10^{-3}}=250 \mathrm{~K} \Omega$

Example (2):
Design d.c voltmeter by using direct method with d'Arsonval meter of 100Ω and full-scale deflection of $100 \mu \mathrm{~A}$ to give the following ranges: $10 \mathrm{mV}, 1 \mathrm{~V}$, and 100 V .

Sol:

$$
R s_{*}=\frac{V_{*}}{\mathrm{Im}}-R m
$$

$$
R s 1=\frac{V 1}{\operatorname{Im}}-R m
$$

$$
R s 1=\frac{10 m V}{100 \mu A}-100=0 \Omega
$$

$$
R s 2=\frac{1}{100 \times 10^{-6}}-100=9.9 \mathrm{~K} \Omega
$$

$$
R s 3=\frac{100}{100 \times 10^{-6}}-100=99.9 \mathrm{~K} \Omega
$$

