
Almamoun University collage
Power electrical Engineering

المسيطرات الرقمية والمعالج الدقيق

Third year Class

Dr Hussam Asper

2stSemester

2023 / 2024

Lecture 6

PLC Programming Languages
The term PLC programming language refers to the

method by which the user communicates information to

the PLC. The standard IEC 61131 (Figure 5-12) was established

to standardize the multiple languages associated

with PLC programming by defining the following five

standard languages:

• Ladder Diagram (LD) —a graphical depiction of a

process with rungs of logic, similar to the relay ladder

logic schemes that were replaced by PLCs.

• Function Block Diagram (FBD) —a graphical depiction

of process flow using simple and complex

interconnecting blocks.

• Sequential Function Chart (SFC) —a graphical

depiction of interconnecting steps, actions, and

transitions.

• Instruction List (IL) —a low-level, text-based

language that uses mnemonic instructions.

• Structured Text (ST) —a high-level, text-based language

such as BASIC, C, or PASCAL specifically

developed for industrial control applications.

Ladder diagram language is the most commonly used

PLC language and is designed to mimic relay logic. The

ladder diagram is popular for those who prefer to defi

ne control actions in terms of relay contacts and coils,

and other functions as block instructions. Figure 5-13

shows a comparison of ladder diagram programming

and instruction list programming. Figure 5-13a shows

the original relay hardwired control circuit. Figure 5-13b

shows the equivalent logic ladder diagram programmed

into a controller. Note how closely the ladder diagram

program closely resembles the hardwired relay circuit.

The input/output addressing is generally different for

each PLC manufacturer. Figure 5-13c show how the

original hardwired circuit could be programmed using

the instruction list programming language. Note that

the instructional list consists of a series of instructions

that refer to the basic AND, OR, and NOT logic gate

functions.

Functional block diagram programming uses instructions

that are programmed as blocks wired together on

screen to accomplish certain functions. Typical types of

function blocks include logic, timers, and counters. Functional

block diagrams are similar in layout to electrical/

electronic block diagrams used to simplify complex systems

by showing blocks of functionality. The primary

concept behind a functional block diagram is data flow.

Function blocks are linked together to complete a circuit

that satisfies a control requirement. Data flow on a path

from inputs, through function blocks or instructions, and

then to outputs.

The use of function blocks for programming of programmable

logic controllers (PLCs) is gaining wider

acceptance. Rather than the classic contact and coil representation

of ladder diagram or relay ladder logic programming,

function blocks present a graphical image to the

programmer with underlying algorithms already defined.

The programmer simply completes needed information

within the block to complete that phase of the program.

Figure 5-14 shows function block diagram equivalents to

ladder logic contacts.

Figure 5-15 illustrates how ladder diagram and functional

block diagram programming could be used to produce

the same logical output. For this application, the

objective is to turn on caution pilot light PL 1 whenever

both sensor switch 1 and sensor switch 2 are closed. The

ladder logic consists of a single rung across the power

rails. This rung contains the two input sensor instructions

programmed in series with the pilot light output instruction.

The function block solution consists of a logic Boolean

And function block with two input references tags for

the sensors and a single output reference tag for the pilot

light. Note there are no power rails in the function block

diagram.

Sequential function chart programming language is

similar to a flowchart of your process. SFC programming

is designed to accommodate the programming of more

advanced processes. This type of program can be split

into steps with multiple operations happening in parallel

branches. The basic elements of a sequential function

chart program are shown in Figure 5-16 .

Structured text is a high level text language primarily

used to implement complex procedures that cannot be

easily expressed with graphical languages. Structured text

uses statements to defi ne what to execute. Figure 5-17 illustrates

how structured text and ladder diagram programming

could be used to produce the same logical output.

For this application, the objective is to energize SOL 1

whenever either one of the two following circuit conditions

exists:

• Sensor 1 and Sensor 2 switches are both closed.

• Sensor 3 and Sensor 4 switches are both closed and

Sensor 5 switch is open.

Relay-Type Instructions
The ladder diagram language is basically a symbolic set of

instructions used to create the controller program. These

ladder instruction symbols are arranged to obtain the desired

control logic that is to be entered into the memory

of the PLC. Because the instruction set is composed of

contact symbols, ladder diagram language is also referred

to as contact symbology.

Representations of contacts and coils are the basic symbols

of the logic ladder diagram instruction set. The three

fundamental symbols that are used to translate relay control
logic to contact symbolic logic are Examine If Closed (XIC),

Examine If Open (XIO), and Output Energize (OTE). Each

of these instructions relates to a single bit of PLC memory

that is specified by the instruction’s address.

The symbol for the Examine If Closed (XIC) instruction

is shown in Figure 5-18 . The XIC instruction, which

is also called the Examine-on instruction, looks and operates

like a normally open relay contact. Associated with

each XIC instruction is a memory bit linked to the status

of an input device or an internal logical condition in a

rung. This instruction asks the PLC’s processor to examine

if the contact is closed. It does this by examining the

bit at the memory location specified by the address in the

following manner:

• The memory bit is set to 1 or 0 depending on the

status of the input (physical) device or internal

(logical) relay address associated with that bit.

• A 1 corresponds to a true status or on condition.

• A 0 corresponds to a false status or off condition.

• When the Examine-on instruction is associated

with a physical input, the instruction will be set to 1

when a physical input is present (voltage is applied

to the input terminal), and 0 when there is no physical

input present (no voltage applied to the inputterminal).

• When the Examine-on instruction is associated by

address with an internal relay, then the status of the

bit is dependent on the logical status of the internal

bit with the same address as the instruction.

• If the instruction memory bit is a 1 (true) this instruction

will allow rung continuity through itself,

like a closed relay contact.

• If the instruction memory bit is a 0 (false) this

instruction will not allow rung continuity through

itself and will assume a normally open state just like

an open relay contact.

The symbol for the Examine If Open (XIO) instruction

is shown in Figure 5-19 . The XIO instruction, which is

also called the Examine-off instruction, looks and operates

like a normally closed relay contact. Associated with

each XIO instruction is a memory bit linked to the status

of an input device or an internal logical condition in a

rung. This instruction asks the PLC’s processor to examine

if the contact is open. It does this by examining the

bit at the memory location specified by the address in the

following manner:

• As with any other input the memory bit is set to 1

or 0 depending on the status of the input (physical)

device or internal (logical) relay address associated

with that bit.

• A 1 corresponds to a true status or on condition.

• A 0 corresponds to a false status or off condition.

• When the Examine-off instruction is used to examine

a physical input, then the instruction will be

interpreted as false when there is a physical input

(voltage) present (the bit is 1) and will be interpreted

as true when there is no physical input present

(the bit is 0).

• If the Examine-off instruction were associated by

address with an internal relay, then the status of the

bit would be dependent on the logical status of the

internal bit with the same address as the instruction.

• Like the Examine-on instruction, the status of the

instruction (true or false) determines if the instruction

will allow rung continuity through itself, like a

closed relay contact.

• The memory bit always follows the status (true = 1

or false = 0) of the input address or internal address

assigned to it. The interpretation of that bit, however,

is determined by which instruction is used to

examine it.

• Examine-on instructions always interpret a 1 status

as true and a 0 status as false, while Examine-off instructions

interpret a 1 status as false and a 0 status

as true.

The symbol for the Output Energize (OTE) instruction

is shown in Figure 5-20 . The OTE instruction looks

and operates like a relay coil and is associated with a

memory bit. This instruction signals the PLC to energize

(switch on) or de-energize (switch off) the output.

The processor makes this instruction true (analogous to

energizing a coil) when there is a logical path of true

XIC and XIO instructions in the rung. The operation of

the Output Energize instruction can be summarized as

follows:

• The status bit of the addressed Output Energize instruction

is set to 1 to energize the output and to 0 to

de-energize the output.

• If a true logic path is established with the input

instructions in the rung, the OTE instruction is energized

and the output device wired to its terminal is

energized.

• If a true logic path cannot be established or

rung conditions go false, the OTE instruction is

de-energized and the output device wired to it is

switched off.

Sometimes beginner programmers used to thinking in

terms of hardwired relay control circuits tend to use the

same type of contact (NO or NC) in the ladder logic program

that corresponds to the type of fi eld switch wired to

the discrete input. While this is true in many instances, it

is not the best way to think of the concept. A better approach

is to separate the action of the fi eld device from

the action of the PLC bits as illustrated in Figure 5-21 . A

signal present makes the NO bit (1) true; a signal absent

makes the NO bit (0) false. The reverse is true for an NC

bit. A signal present makes the NC bit (1) false; a signal

absent makes the NO bit (0) true.

The main function of the ladder logic diagram program

is to control outputs based on input conditions, as

illustrated in Figure 5-22 . This control is accomplished

through the use of what is referred to as a ladder rung. In

general, a rung consists of a set of input conditions, represented

by contact instructions, and an output instruction

at the end of the rung, represented by the coil symbol.

Each contact or coil symbol is referenced with an address

that identifies what is being evaluated and what is being

controlled. The same contact instruction can be used

throughout the program whenever that condition needs to

be evaluated. The number of ladder logic relays and input

and output instructions is limited only by memory size.

Most PLCs allow more than one output per rung.

For an output to be activated or energized, at least one

left-to-right true logical path must exist, as illustrated in

Figure 5-23 . A complete closed path is referred to as having

logical continuity. When logical continuity exists in

at least one path, the rung condition and Output Energize

instruction are said to be true. The rung condition and

OTE instruction are false if no logical continuity path has

been established. During controller operation, the processor

evaluates the rung logic and changes the state of the

outputs according to the logical continuity of rungs.

Instruction Addressing
To complete the entry of a relay-type instruction, you

must assign an address to each instruction. This address

indicates what PLC input is connected to what input device

and what PLC output will drive what output device.

The addressing of real inputs and outputs, as well as

internals, depends on the PLC model used. Addressing

formats can vary from one PLC family to another as well

as for different manufacturers. These addresses can be

represented in decimal, octal, or hexadecimal depending

on the number system used by the PLC. The address

identifies the function of an instruction and links it to a

particular bit in the data table portion of the memory.

Figure 5-24 shows the addressing format for an Allen-

Bradley SLC 500 controller. Addresses contain the slot

number of the module where input or output devices

are connected. Addresses are formatted as fi le type, slot

number, and bit.

The assignment of an I/O address can be included in

the I/O connection diagram, as shown in Figure 5-25 . Inputs

and outputs are typically represented by squares and

diamonds, respectively.

